LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sanhueza, Eugenio (2001)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Hydrochloric acid, measured as non-sea-salt chloride (nssCl−), is a ubiquitous component of continental and marine “background” rain, with concentrations ranging between 1.5 and 3.2 μeq/l. The potential contribution of HCl to the acid–basic equilibrium ranges from ∼10% to ∼40% showing that this acid plays a significant rôle in the rain chemistry of remote regions of the world. Considering that the global amount of rainfall is ∼5×1017 liters per year, a total deposition of 1.8–5 Tg/yr of nssHCl is estimated. The most important source of gaseous HCl in the background atmosphere is the degassing of HCl from sea-salt aerosols; however, due the simultaneous scavenging of HCl and basic Cl-depleted aerosols, this HCl does not contribute to the acidity of rain. Due to the short atmospheric lifetime of HCl, other minor “local” sources (e.g., volcanoes and burning of coal, waste and biomass) do not affect remote sites of the world, in a significant and/or permanent way. Therefore, an additional, well-distributed, significant source of HCl should exist in the global background atmosphere. In one way or another, all chlorocarbons have the potential to produce HCl when they are oxidized in the atmosphere. From the amount of halocarbon (i.e., CH3Cl, CH2Cl2, CHCl3, CH3CCl3, CH2ClCH2Cl, CHClCCl2, CCl2CCl2 and CHF2Cl) that is degradated by chemical reactions, the estimated atmospheric production of HCl in the gas and liquid phase is 3.4 Tg/yr and 0.78 Tg/yr, respectively. Assuming that ∼30% of the HCl produced in the gas phase is removed by dry deposition, it is obtained that ∼3 Tg of HCl should be annually deposited in rainfall. This estimate agrees well with the “measured” amount of nssCl−(1.8-5 Tg/yr) deposited globally in rainfall. Therefore, this analysis suggests that a significant fraction of the HCl found in rainfall at remote sites is most likely produced in the photochemical degradation of various chlorocarbons in the troposphere. About 50% of this HCl comes from anthropogenic sources of chlorocarbons.DOI: 10.1034/j.1600-0889.2001.d01-11.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andreae, M. O., Talbot, R. W., Berresheim, K. M., Beecher, K. M. and Li, S. M. 1990. Precipitation chemistry over central Amazonia. J. Geophys. Res. 95, 16,987-16,999.
    • Atlas, E., Pollock, W., Greemberg, J., Heidt, L. and Thomson, A. M. 1993. Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during Saga 3. J. Geophys. Res. 98, 16,933-16,947.
    • Ayers, G. P. and Ivey, J. P. 1988. Precipitation composition at Cape Grim, 1977-1985. T ellus 40B, 297-307.
    • Ayers, G. P. and Manton, M. J. 1991. Rainwater composition at two BAPMoN regional stations in SE Australia. T ellus 43B, 379-389.
    • Ayers, G. P., Gillett, R. W., Cainey, J. M. and Dick, A. L. 1999. Chlorine and bromine loss from sea-salt particle in southern ocean air. J. Atmos. Chem. 33, 299-319.
    • Behnke, W. and Zetzsch, C. 1989. Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl. J. Aerosol Sci. 20, 1167-1170.
    • Cauer, H. 1951. Some problems of atmospheric chemistry. In: Compendium of meteorology. American Meteorological Society, Boston.
    • Charlson, R. J. and Rodhe, H. 1982. Factors controlling the acidity of natural rainwater. Nature 295, 683-685.
    • Class, Th. and Ballschmiter, K. 1987. Global baseline pollution studies, X. Atmospheric halocarbons: global budget estimations for tetrachloroethene, 1,2-dichloroethane, 1,1,1,2-tetrachloroethane, hexachloroethane and hexachlorobutadiene. Fresenius Z. Anal. Chem. 327, 198-204.
    • Clegg, S. L. and Brimblecombe, P. 1985. Potential degassing of hydrogen chloride from acidified sodium chloride droplets. Atmos. Environ. 19, 465-470.
    • Cox, R. A., Atkinson, R., Moortgat, G. K., Ravishankara, A. R. and Sidebottom, H. W. 1995. Atmospheric degradation of halocarbons substitutes. In: Scientific assessment of ozone depletion: 1994. WMO/UNEP, WMO report No. 37, pp. 12.1-12.23.
    • Dayan, U., Miller, J. M., Keene, W. C. and Galloway, J. N. 1985. An analysis of precipitation chemistry data from Alaska. Atmos. Environ. 19, 651-657.
    • Dentener, F. J. and Crutzen, P. J. 1994. A three-dimensional model of the global ammonia cycle. J. Atmos. Chem. 19, 331-369.
    • Duce, R. A. 1969. On the source of gaseous chlorine in the marine atmosphere. J. Geophys. Res. 74, 4597-4599.
    • Edney, E. O., Kleindienst, T. E. and Corse, E. W. 1986. Room temperature rate constant for the reaction of OH with selected chlorinated and oxygenated hydrocarbons. Inter. J. Chem. Kinet. 18, 1355-1371.
    • Erickson III, D. J., Seuzaret, C., Keene, W. C. and Gong, S. L. 1999. A general circulation model based calculation of HCl and ClNO2 production from sea-salt dechlorination: Reactive chlorine emissions inventory. J. Geophys. Res. 104, 8347-8372.
    • Galloway, J. N., Keene, W. C. and Likens, G. E. 1996. Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park, Chile. J. Geophys. Res. 101, 6883-6897.
    • Gillett, R. W., Ayers, G. P. and Noller, B. N. 1990. Rainwater acidity at Jabiru, Australia, in the wet season of 1983/84. Sci. T otal Environ. 92, 129-144.
    • Graedel, T. E. and Crutzen, P. J. 1993. Atmospheric change. An earth system perspective. W. H. Freeman and Company, New York.
    • Graedel, T. E. and Keene, W. C. 1995. Tropospheric budget of reactive chlorine. Global Biogeochem. Cycles 9, 47-77.
    • Helas, G. and Wilson, S. R. 1992. On sources and sinks of phosgene in the troposphere. Atmos. Environ. 26A, 2975-2982.
    • Hendry, C. D., Berish, C. W. and Edgerton, E. S. 1984. Precipitation chemistry at Turrialba, Costa Rica. Wat. Resour. Res. 20, 1677-1684.
    • Junge, C. E. and Werby, R. T. 1958. The concentration of chlorine, sodium, potassium, calcium and sulfate in rain water over the United States. J. Meteorol. 15, 417-425.
    • Keene, W. C. and Galloway, J. N. 1986. Considerations regarding sources for formic and acetic acids in the troposphere. J. Geophys. Res. 91, 14,466-14,474.
    • Keene, W. C. et al. 1999. Composite global emissions of reactive chlorine from anthropogenic and natural sources: Reactive chlorine emissions inventory. J. Geophys. Res. 104D, 8429-8440.
    • Khalil, M. A. K. and Rasmussen, R. A. 1999a. Atmospheric methyl chloride. Atmos. Environ. 33, 1305-1321.
    • Khalil, M. A. K. and Rasmussen, R. A. 1999b. Atmospheric chloroform. Atmos. Environ. 33, 1151-1158.
    • Kindler, T. P., Chameides, W. L., Wine, P. H., Cunnold, D. M., Alyea, F. N. and Franklin, J. A. 1995. The fate of atmopsheric phosgene and the stratospheric chlorine loadings of its parent compounds: CCl4, C2 Cl4, C2HCl3, CH3CCl3, and CHCl3. J. Geophys. Res. 100, 1235-1251.
    • Koppmann, R., Johnen, F. J., Plass-D u¨lmer, C. and Rudolph, J. 1993. Distribution of methylchloride, dichloromethane, trichloroethene and tetrachloroethene over the North and South Atlantic. J. Geophys. Res. 98, 20,517-20,526.
    • Kritz, M. A. and Rancher, J. 1980. Circulation of Na, Cl, and Br in the tropical marine atmosphere. J. Geophys. Res. 85, 1633-1639.
    • Kurylo, M. J. and Rodriguez, J. M. 1999. Short-lived ozone-related compounds. In: Scientific assessment of ozone depletion: 1998. WMO/UNEP, WMO report No. 44, pp. 2.1-2.56.
    • Legrand, M. R. and Delmas, R. J. 1984. The ionic balance of Antarctic snow: A 10-year detailed record. Atmos. Environ. 18, 1867-1874.
    • Legrand, M. R. and Delmas, R. J. 1988. Formation of HCl in the Antarctic atmosphere. J. Geophys. Res. 93, 7153-7163.
    • Lesack, L. F. W. and Melack, J. M. 1991. The deposition, composition and potential sources of major ionic solutes in rain of the central Amazon basin. Wat. Resour. Res. 27, 2953-2977.
    • Likens, G. E., William, W. C., Miller, J. M. and Galloway, J. N. 1987. Chemistry of precipitation from a remote, terrestrial site in Australia. J. Geophys. Res. 92, 13,299-13,314.
    • Lobert, J. M., Keene, W. C., Logan, J. A. and Yevich, R. 1999. Global chlorine emissions from biomass burning: Reactive chlorine emission inventory. J. Geophys. Res. 104, 8373-8389.
    • Martens, C. S., Wesolowski, J. J., Harris, R. C. and Kaifer, R. 1973. Chlorine loss from Puerto Rican and San Francisco Bay Area marine aerosols. J. Geophys. Res. 78, 8778-8792.
    • McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G., Midgley, P. M. and Li, Y-F. 1999. Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive chlorine emissions inventory. J. Geophys. Res. 104D, 8391-8403.
    • McDowell, W. H., Sa´nchez, C. G., Asbury C. E. and Ramos-Pe´rez, C. R. 1990. Influence of sea-salt aerosols and long range transport of precipitation chemistry at El Verde, Puerto Rico. Atmos. Environ. 24A, 2813-2821.
    • Mo¨ ller, D. 1990. The Na/Cl ratio in rainwater and the seasalt chloride cycle. T ellus 42B, 254-262.
    • Moody, J. L., Pszenny, A. A. P., Gaudry, A., Keene, W. C., Galloway, J. N. and Polian, G. 1991. Precipitation composition and its variability in the Southern Indian Ocean: Amsterdam Island, 1980-1987. J. Geophys. Res. 96, 20,769-20,786.
    • Pio, C. A., and Lopes, D. A. 1998. Chlorine loss from marine aerosol in a coastal atmosphere. J. Geophys. Res. 103, 25,263-25,272.
    • Post, D., Bridgman, H. A. and Ayers, G. P. 1991. Fog and rainwater composition in rural SE Australia. J. Atmos. Chem. 13, 83-95.
    • Prather, M. J., Garcia, M. M., Douglas, A. R., Jackman, C. H., Ko, M. K. W. and Sze, N. D. 1990. The space shuttle's impact on the stratosphere. J. Geophys. Res. 95, 18,583-18,590.
    • Rudolph, J., Koppmann, R. and Plass-Dulmer, C. 1996. The budgets of ethane and tetrachloroethene: is there evidence for an impact of reactions with chlorine atoms in the troposphere?. Atmos. Environ. 30, 1887-1894.
    • Sanhueza, E. 1977. The chlorine atom sensitized oxidation of HCCl3, HCF2Cl and HCF3. J. Photochem. 7, 325-334.
    • Sanhueza, E. and Heicklen, J. 1975. Chlorine-atom sensitized oxidation of dichloromethane and chloromethane. J. Phys. Chem. 79, 7-11.
    • Sanhueza, E. and Rond o´n, A. 1988. Particle-size distribution of inorganic water soluble ions in the Venezuelan savannah atmosphere during burning and non-burning periods. J. Atmos. Chem. 7, 369-388.
    • Sanhueza, E. and Santana, M. 1994. Atmospheric wet depositions in tropical America. Israel J. Chem. 34, 327-334.
    • Sanhueza, E., Hisatsune, I. C. and Heicklen, J. 1976. Oxidation of halothylenes. Chemical Review 76, 801-826.
    • Sanhueza, E., Arias, M. C., Donoso, L., Graterol, N., Hermoso, M., Mart´ı, I., Romero, J., Rond o´n, A. and Santana, M. 1992. Chemical composition of acid rains in the Venezuelan savanna region. T ellus 44B, 54-62.
    • Sanhueza, E., Fraser, P. and Zander, R. 1995. Source gases: trends and budgets. In: Scientific assessment of ozone depletion: 1994. WMO/UNEP, WMO report No. 37, pp. 2.1-2.38.
    • Sanhueza, E., Donoso, L., Santana, M., Ferna´ndez, E. and Romero, J. 1999. Atmospheric chemistry over the Auyantepuy (5° 46∞ N; 60° 32∞ W; 2100 meters a.s.l.). Interciencia 24, 372-380.
    • Sidebottom, H. and Franklin, J. 1996. The atmospheric fate and impact of hydrochloro-fluorocarbons and chlorinated solvents. Pure & Appl. Chem. 68, 1757-1769.
    • Symonds, R. B., Rose, W. I. and Reed, M. H. 1988. Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature 334, 415-418.
    • Talbot, R. W., Harriss, R. C., Browell, E. V., Gregory, G. L., Sebacher, D. I. and Beck, S. M. 1986. Distribution and geochemistry of aerosols in the Tropical North Atlantic troposphere: Relationship to Saharan dust. J. Geophys. Res. 91D, 5173-5182.
    • Tuazon, E. C., Atkinson, R., Aschmann, S. M., Goodman, M. A. and Winer, A. M. 1988. Atmospheric reactions of chloroethenes with the OH radical. Intern. J. Chem. Kinet. 20, 241-265.
    • Wagner, G. H. and Steele, K. F. 1989. Na+/Cl− ratios in rain across the USA, 1982-1986. T ellus 41B, 444-451.
    • Whelpdale, D. M., Summers, P. W. and Sanhueza, E. 1997. A global overview of atmospheric acid deposition fluxes. Environ. Monitoring & Assess. 48, 217-247.
    • Whitlow, S., Mayewski, P. A. and Dibb, J. E. 1992. A comparison of major chemical species seasonal concentration and accumulation at the South Pole and Summit, Greenland. Atmos. Environ. 26A, 2045-2054.
    • Wiedmann, T. O., Guethner, B., Class, T. J. and Ballschmiter, K. 1994. Global distribution of tetrachloroethene in the troposphere: Measurements and modeling. Environ. Sci. T echnol. 28, 2321-2329.
    • Williams, M. R., Fisher, T. R. and Melack, J. M. 1997. Chemical composition and deposition of rain in the Central Amazon, Brazil. Atmos. Environ. 31, 207-217.
    • Willison, M. J., Clarke, A. G. and Zeki, E. M. 1989. Chlorine aerosols in central northern England. Atmos. Environ. 23, 2231-2239.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from