LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hallberg, A.; Noone, K. J.; Ogren, J. A. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: complex mixtures, sense organs
Measurements of cloud droplet residuals, which represent the cloud droplet nuclei (CDN) that formed cloud droplets, were made in ambient clouds with a 1-min time resolution. Only a weak relationship was found between the CDN number and volume concentrations, because the particles dominating the two concentrations resided in different size ranges. A comparison between the total particle size distribution and the size distribution of the CDN showed that only a small fraction of the total number of particles at a given size (smaller than 0.2 μmm diameter) formed cloud droplets. Among the CDN, however, 75% of the number of particles were smaller than 0.2 μmm diameter. Concurrent measurements showed that hygroscopic particles of the same size and larger remained in the interstitial air. The same feature was observed over longer time periods on a 1-min basis. Suggested hypotheses to explain why only a few of the smaller hygroscopic particles formed cloud droplets while larger particles remained in the interstitial air are that the growth of the droplet could have been influenced by the composition of individual particles and/or that entrainment introduced hygroscopic particles in the interstitial air.DOI: 10.1034/j.1600-0889.1998.00005.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, T. L., Charlson, R. J. and Covert, D. S. 1993. Calibration of a counterflow virtual impactor at aerodynamic diameters from 1 to 15 mm. Aerosol Sci. T echnol. 19, 317-329.
    • Anderson, T. L., Covert, D. S. and Charlson, R. J. 1994, Cloud droplet number studies with a counterflow virtual impactor. J. Geophys. Res. 99, 8249-8256.
    • Appel, B. R., Wall, S. M., Tokiwa, Y. and Haik, M. 1980. Simultaneous nitric acid, particulate nitrate and acidity measurements in ambient air. Atmos. Environ. 14, 549-554.
    • Arends, B. G., Kos, G. P. A., Maser, R., Schell, D., Wobrock, W., Winkler, P., Ogren, J. A., Noone, K. J., Hallberg, A., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Berner, A., Solly, I. and Kruisz, C. 1994, Microphysics of clouds at Kleiner Feldberg, J. Atmos. Chem. 19, 59-85.
    • Ayers, G. P. and Gras, J. L. 1991, Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. Nature 353, 834-835.
    • Baker, M. B., Corbin, R. G. and Latham, J. 1980. The influence of entrainment on the evolution of cloud droplet spectra: (I). A model of inhomogeneous mixing. Quart. J. R. Met. Soc. 106, 581-598.
    • Bigg, E. K., Brownscombe, J. L. and Thompson, W. J. 1969. Fog modification with long-chain alcohols. J. Appl. Meteorology 8, 75-82.
    • Bigg, E. K. 1986. Discrepancy between observation and prediction of concentrations of cloud condensation nuclei. Atmos. Res. 20, 82-86.
    • Caughey, S. J., Crease, B. A. and Roach, W. T. 1982. A field study of nocturnal stratocumulus; (II) Turbulence structure and entrainment. Quart. J. R. Met. Soc. 108, 125-144.
    • Charlson, R. J., Lovelock, J. E., Andreae, M. O. and Warren, S. G. 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655-661.
    • Forrest, J., Spandau, D. J., Tanner, R. L. and Newman, L. 1982. Determination of atmospheric nitrate and nitric acid employing a diVusion denuder with a filter pack. Atmos. Environ. 16, 1473-1485.
    • Flossmann, A. I., Hall, W. D. and Pruppacher, H. R. 1985, A theoretical study of the wet removal of atmospheric pollutants. Part 1: The redistribution of aerosol particles captured trough nucleation and impaction scavenging by growing cloud drops, J. Atmos. Sci. 42, 583-606.
    • Fukuta, N. and Walter, L. A. 1970. Kinetics of hydrometer growth from a vapor-spherical model. J. Atmos. Sci. 27, 1160-1172.
    • Fuzzi, S., Facchini, M. C., Schell, D., Wobrock, W., Winkler, P., Arends, B. G., Kessel, M., M o¨ls, J. J., Pahl, S., Schneider, T., Berner, A., Solly, I., Kruisz, C., Kalina, M., Fierlinger, H., Hallberg, A., Vitali, P., Santoli, L. and Tigli, G., 1994. Multiphase chemistry and acidity of clouds at Kleiner Feldberg. J. Atmos. Chem. 19, 87-106.
    • Gill, P. S., Graedel, T. E. and Weschler, C. J. 1983. Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev. Geophys. Space Phys. 21, 903-920.
    • Hallberg, A., Ogren, J. A., Noone, K. J., Okada, K., Heintzenberg, J. and Svenningsson, I. B. 1994a. The influence of aerosol particle composition on cloud droplet formation. J. Atmos. Chem. 19, 153-171.
    • Hallberg, A., Noone, K. J., Ogren, J. A., Svenningsson, I. B., Flossmann, A. I., Wiedensohler, A., Hansson, H.-C., Heintzenberg, J., Anderson, T. L., Arends, B. and Maser, R. 1994b. Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. J. Atmos. Chem. 19, 107-127.
    • Hegg, D. A., Ferek, R. J., Hobbs, P. V. and Radke, L. 1991. Dimethylsulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean. J. Geophys. Res. 96, 13 189-13 191.
    • Knollenberg, R. G. 1981. Techniques for probing cloud microstructure, Clouds their formation, optical properties and eVects, (eds.: P. V. Hobbs, A. Deepak), pp. 15-92.
    • K o¨hler, H. 1923. Zur Kondensation des Wasserdampfes in der Atmospha¨re. Geofysiske Publ. 2, 1-15.
    • Leaitch, W. R., Isaac, G. A., Strapp, J. W., Banic, C. M. and Wiebe, H. A. 1992. The relationship between cloud droplet number concentrations and anthropogenic pollution: Observation and climatic implications. J. Geophys. Res. 97, 2463-2474.
    • Nicholls, S. and Turton, J. D. 1986. An observational study of the structure of stratiform cloud sheets: Part II. Entrainment. Quart. J. R. Soc. 112, 461-480.
    • Noone, K. J., Ogren, J. A., Heintzenberg, J., Charlson, R. J. and Covert, D. S. 1988. Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. T ech. 8, 235-244.
    • Noone, K. J., Hansson, H.-C. and Mallant, R. K. A. M. 1992a. Droplet sampling from crosswinds: An inlet eYciency calibration. J. Aerosol Sci. 23, 153-164.
    • Noone, K. J., Ogren, J. A., Hallberg, A., Heintzenberg, J., Str o¨m, J., Hansson, H.-C., Svenningsson, B., Wiedensohler, A., Fuzzi, S., Facchini, M. C., Arends, B. and Berner, A. 1992b. Changes in aerosol size- and phase distributions due to physical and chemical processes in fog. T ellus 44B, 489-504.
    • Novakov, T. and Penner J. E. 1993. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature 365, 823-826.
    • Ogren, J. A., Heintzenberg, J. and Charlson R. J. 1985. In-situ sampling of clouds with a droplet to aerosol converter. Geophys. Res. L ett. 12, 121-124.
    • Podzimek, J. and Saad, A. N. 1975. Retardation of condensation nuclei growth by surfactant. J. Geophys. Res. 80, 3386-3392.
    • Pruppacher, H. R. and Klett, J. D. 1980. Microphysics of clouds and precipitation. Reidel, Dordrecht, Holland, 714 pp.
    • Rubel, G. O. and Gentry, J. W. 1985. Measurements of water and ammonia accomodation coeYcients at surfaces with adsorbed monolayers of hexadecanol. J. Aerosol Sci. 16, 571-574.
    • Slingo, A., Brown, R. and Wrench, C. L. 1982a. A field study of nocturnal stratocumulus (III). High resolution radiative and microphysical observations. Quart. J. R. Met. Soc. 108, 145-165.
    • Slingo, A., Nicholls, S. and Schmetz, J. 1982b. Aircraft observations of marine stratocumulus during JASIN. Quart. J. R. Met. Soc. 108, 833-856.
    • Squires, P. and Twomey, S. 1960. The relation between cloud droplet spectra and the spectrum of cloud nuclei. Physics of precipitation. Geophys. Monogr. no. 5, Washington, D. C., Amer. Geophys. Union, 211-219.
    • Svenningsson, I. B., Hansson, H.-C., Wiedensohler, A., Noone, K. J., Ogren, J. A., Hallberg, A. and Colvile, R. N. 1994. Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud: experimental results from Kleiner Feldberg. J. Atmos. Chem. 19, 129-152.
    • Twomey, S. 1959. The nuclei of natural cloud formation Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Geofis. Pure Appl. 43, 243-249.
    • Twomey, S. and Warner, J. 1967. Comparison of measurements of cloud droplets and cloud nuclei. J. Atmos. Sci. 24, 702-703.
    • Twomey, S. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251-1256.
    • Twomey, S. 1977. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149-1152.
    • Twomey, S. 1980. Cloud nucleation in the atmosphere and the influence of nucleus concentration levels in atmospheric physics. J. Phys. Chem. 84, 1459-1463.
    • Twomey, S., Piepgrass, M. and Wolfe, T. L. 1984. An assessment of the impact of pollution on global cloud albedo. T ellus 36B, 356-366.
    • Warner, J. and Warne, W. G. 1970. The eVect of surface films in retarding the growth by condensation of cloud nuclei and their use in fog suppression. J. Appl. Meteor. 9, 639-650.
    • Warner, J. 1973. The microstructure of cumulus cloud: Part IV. The eVect on the droplet spectrum of mixing between cloud and environment. J. Atmos. Sci. 30, 256-261.
    • Winkler, P., Wobrock, W., Colvile, R. N. and Schell, D. 1994. The influence of meteorology on clouds on Kleiner Feldberg. J. Atmos. Chem. 19, 37-58.
    • Wobrock, W., Schell, D., Maser, R., Jaeschke, W., Georgii, H. W., Wieprecht, W., Arends, B. G., M o¨ls, J. J., Kos, G. P. A., Fuzzi, S., Facchini, M. C., Orsi, G., Berner, A., Solly, I., Kruisz, C., Svenningsson, I. B., Wiedensohler, A., Hansson, H.-C., Ogren, J. A., Noone, K. J., Hallberg, A., Pahl, S., Schneider, T., Winkler, P., Winiwarter, W., Colvile, R., Choularton, T. W., Flossmann, A. I. and Borrmann, S. 1994. The Kleiner-Feldberg cloud experiment 1990. An overview. J. Atmos. Chem. 19, 3-35.
    • Zuber, A. and Witt, G. 1987. Optical hygrometer using diVerential absorption of hydrogen Lyman-Alpha radiation. Appl. Opt. 26, 3083-3089.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from