LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tachiiri, Kaoru; Hargreaves, Julia C.; Annan, James D.; Huntingford, Chris; Kawamiya, Michio (2013)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: allowable emissions, Meteorology. Climatology, QC851-999, earth system model of intermediate complexity, climate-carbon cycle system, climate-carbon cycle system; climate projection; carbon emission, observational constraints, climate-carbon cycle system; Earth system model of intermediate complexity; uncertainty; parameter perturbation; observational constraints; carbon uptake, Representative Concentration Pathways, parametric uncertainty
Using an ensemble of simulations with an intermediate complexity climate model and in a probabilistic framework, we estimate future ranges of carbon dioxide (CO2) emissions in order to follow three medium-high mitigation concentration pathways: RCP2.6, RCP4.5 and SCP4.5 to 2.6. Uncertainty is first estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then constrained by comparison against contemporary measurements. For both constrained and unconstrained projections, our calculated allowable emissions are close to the standard (harmonised) emission scenarios associated with these pathways. For RCP4.5, which is the most moderate scenario considered in terms of required emission abatement, then after year 2100 very low net emissions are needed to maintain prescribed year 2100 CO2 concentrations. As expected, RCP2.6 and SCP4.5 to 2.6 require more strict emission reductions. The implication of this is that direct sequestration of carbon dioxide is likely to be required for RCP4.5 or higher mitigation scenarios, to offset any minimum emissions for society to function (the ‘emissions floor’). Despite large uncertainties in the physical and biogeochemical processes, constraints from model-observational comparisons support a high degree of confidence in predicting the allowable emissions consistent with a particular concentration pathway. In contrast the uncertainty in the resulting temperature range remains large. For many parameter sets, and especially for RCP2.6, the land will turn into a carbon source within the 21st century, but the ocean will remain as a carbon sink. For land carbon storage and our modelling framework, major reductions are seen in northern high latitudes and the Amazon basin even after atmospheric CO2 is stabilised, while for ocean carbon uptake, the tropical ocean regions will be a source to the atmosphere, although uncertainties on this are large. The parameters which most significantly affect the allowable emissions are aerosols and climate sensitivity, but some carbon-cycle related parameters (e.g. maximum photosynthetic rate and respiration’s temperature dependency of vegetation) also have significant effects. Parameter values are constrained by observation, and we found that the CO2 emission data had a significant effect in constraining climate sensitivity and the magnitude of aerosol radiative forcing.Keywords: climate-carbon cycle system, earth system model of intermediate complexity, parametric uncertainty, observational constraints, allowable emissions, Representative Concentration Pathways(Published: 27 November 2013)Citation: Tellus B 2013, 65, 20586, http://dx.doi.org/10.3402/tellusb.v65i0.20586
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A. and co-authors. 2009. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 458, 1163 1166. DOI: 10.1038/nature08019.
    • Annan, J. D. and Hargreaves, J. C. 2009. On the generation and interpretation of probabilistic estimates of climate sensitivity. Clim. Change. 104, 423 436. DOI: 10.1007/s10584-009-9715-y.
    • Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D. and co-authors. 2013. Carbon-concentration and carbonclimate feedbacks in CMIP5 Earth system models. J. Clim, 26, 5289 5314. DOI: 10.1175/JCLI-D-12-00494.1.
    • Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L. and co-authors. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, L05805. DOI: 10.1029/2010GL046270.
    • Bodman, R. W., Rayner, P. J. and Karoly, D. J. 2013. Uncertainty in temperature projections reduced using carbon cycle and climate observations. Nat. Clim. Change, 3, 725 729. DOI: 10.1038/nclimate1903.
    • Bowerman, N. H. A., Frame, D. J., Huntingford, C., Lowe, J. A. and Allen, M. R. 2011. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy. Philos. Trans. R. Soc. A. 369, 45 66. DOI: 10.1098/rsta.2010. 0288.
    • Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. and Jones, P. D. 2006. Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106. DOI: 10.1029/2005JD006548.
    • Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J. and co-authors. 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological and Environmental Research, Washington, DC, 154 pp.
    • Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E. and co-authors. 2008. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature. 453, 1090 1095.
    • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and co-authors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis and co-authors), Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 129 234.
    • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W. and co-authors. 2006. Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. J. Clim. 19, 3337 3353.
    • Ganachaud, A. 2003. Large-scale mass transports, water mass formation, and diffusivities estimated from World Ocean Circulation Experiment (WOCE) hydrographic data. J. Geophys. Res. 108(C7), 3213. DOI: 10.1029/ 2002JC001565.
    • Gent, P. R. and McWilliams, J. C. 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150 155.
    • Gregory, J. M., Jones, C. D., Cadule, P. and Friedlingstein, P. 2009. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232 5250.
    • Hajima, T., Ise, T., Tachiiri, K., Kato, E., Watabnabe, S. and Kawamiya, M. 2012. Climate change, allowable emission, and earth system response to representative concentration pathway scenarios. J. Meteorol. Soc. Jpn. 90(3), 417 434.
    • Harris, G. R., Sexton, D. M. H., Booth, B. B. B., Collins, M. and Murphy, J. M. 2013. Probabilistic projections of transient climate change. Clim. Dynam, 40, 2937 2972. DOI: 10. 1007/s00382-012-1647-y.
    • Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N. P., Luo, Y. and co-authors. 2007. Understanding and attributing climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change (eds. S. Solomon, et al.), Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 663 745.
    • Houghton, R. A., van der Werf, G. R., DeFries, R. S., Hansen, M. C., House, J. I. and co-authors. 2012. Chapter G2 Carbon emissions from land use and land-cover change. Biogeosci. Discuss. 9, 835 878.
    • Huntingford, C. 2013. Climate projection: refining global warming projections. Nat. Clim. Change. 3, 704 705.
    • Huntingford, C., Lowe, J. A., Gohar, L. K., Bowerman, N. H. A., Allen, M. R. and co-authors. 2012. The link between a global 28C warming threshold and emissions in years 2020, 2050 and beyond, Environ. Res. Lett. 7(1), 014039.
    • Ishii, M. and Kimoto, M. 2009. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287 299.
    • Ito, A. and Oikawa, T. 2002. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on drymatter production theory and plot-scale validation. Ecol. Model. 151, 143 176.
    • Jones, C. D., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E. and co-authors. 2013. 21st Century compatible CO2 emissions and airborne fraction simulated by CMIP5 earth system models under 4 representative concentration pathways. J. Clim, 26, 4398 4413. DOI: 10.1175/JCLI-D-12-00554.1.
    • K-1 model developers. 2004. K-1 Coupled GCM (MIROC) Description, K-1 Technical Report No. 1. Online at: http:// www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G. and coauthors. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247 268.
    • Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P. J. and co-authors. 2010. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Assessing and Combining Multi Model Climate Projections. (eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor and P. M. Midgley), IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland. Online at: http://www. ipcc-wg2.gov/meetings/EMs/IPCC_EM_MultiModelEvaluation_ MeetingReport.pdf
    • Lenton, T. M. 2000. Land and ocean carbon cycle feedback effects on global warming in a simple earth system model. Tellus. 52B, 1159 1188.
    • Le Que´ re´ , C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L. and co-authors. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 836.
    • Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E. and co-authors. 2009. Global ocean heat content 1955 2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608. DOI: 10.1029/2008GL037155.
    • Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715 737. DOI: 10.5194/acp-5- 715-2005.
    • Lumpkin, R. and Speer, K. 2010. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550 2562.
    • Matthews, H. D., Gillett, N. P., Stott, P. A. and Zickfeld, K. 2009. The proportionality of global warming to cumulative carbon emissions. Nature. 459, 829 832. DOI: 10.1038/nature08047.
    • Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K. and co-authors. 2009. Greenhouse-gas emission targets for limiting global warming to 28C. Nature. 458, 1158 1162. DOI: 10.1038/nature08017.
    • Meinshausen, M., Raper, S. C. B. and Wigley, T. M. L. 2011a. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 Part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417 1456.
    • Meinshausen, M., Smith, S. J., Calvin, K. V., Daniel, J. S., Kainuma, M. and co-authors. 2011b. The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Clim. Change. 109, 213 241. DOI: 10.1007/s10584-011-0156-z.
    • Meinshausen, M., Wigley, T. M. L. and Raper, S. C. B. 2011c. Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 Part 2: applications. Atmos. Chem. Phys. 11, 1457 1471.
    • Moss, R., Edmonds, J., Hibbard, K., Manning, M., Rose, S. and co-authors. 2010. The next generation of scenarios for climate change research and assessment. Nature. 463, 747 756.
    • Murphy, J. M., Sexton, D. M. H., Barnett, D. N., Jones, G. S., Webb, M. J. and co-authors. 2004. Quantifying uncertainties in climate change from a large ensemble of general circulation model predictions. Nature. 430, 768 772.
    • Oka, A., Tajika, E., Abe-Ouchi, A. and Kubota, K. 2011. Role of the ocean in controlling atmospheric CO2 concentration in the course of global glaciations. Clim. Dyn. 37, 1755 1770. DOI: 10.1007/s00382 010 0959 z.
    • Oort, A. H. 1983. Global atmospheric circulation statistics, 1958 1973. NOAA Prof Pap. 14, 180.
    • Orr, J., Najjar, R., Sabine, C. and Joos, F. 2000. Abiotic-HOWTO Revision: 1.16. Online at: http://www.cgd.ucar.edu/oce/klindsay/ ocmip/HOWTO-Abiotic.pdf
    • Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M. and coauthors. 2009. Aerosol indirect effects*general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697 8717. DOI: 10.5194/acp-9-8697-2009.
    • Raupach, M. R. 2013. The exponential eigenmodes of the carbonclimate system, and their implications for ratios of responses to forcings. Earth Syst. Dynam. 4, 31 49.
    • Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C. and co-authors. 2013. Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys. 13, 2939 2974. DOI: 10.5194/acp-13-2939-2013.
    • Smethie, Jr., W. M. and Fine, R. A. 2001. Rates of North Atlantic Deep Water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res. PT1. 48, 189 215.
    • Smith, S. J. and Wigley, T. M. L. 2006. Multi-gas forcing stabilization with the MiniCAM. Energ. J. (Special Issue No. 3), 373 391.
    • Tachiiri, K., Hargreaves, J. C., Annan, J. D., Oka, A., Abe-Ouchi, A. and co-authors. 2010. Development of a system emulating the global carbon cycle in earth system models. Geosci. Model Dev. 3, 365 376.
    • Tachiiri, K., Ito, A., Hajima, T., Hargreaves, J. C., Annan, J. D. and co-authors. 2012. Nonlinearity of land carbon sensitivities in climate change simulations. J. Meteorol. Soc. Jpn. 90A, 271 276.
    • Talley, L. D., Reid, J. L. and Robbins, P. E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J. Clim. 16, 3213 3226.
    • Taylor, K. E., Stouffer, R. J. and Meehl, G. A. 2009. A summary of the CMIP5 experimental design. Online at: http://cmippcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_22Jan11_marked.pdf Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D. and co-authors. 2007. Observations: surface and atmospheric climate change. In: Climate Change 2007: In The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, et al.), Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 235 336.
    • van Vuuren, D., den Elzen, M., Lucas, P., Eickhout, B., Strengers, B. and co-authors. 2007. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim. Change. 81(2), 119 159. DOI: 10.1007/s10584-006-9172-9.
    • Wise, M. A., Calvin, K. V., Thomson, A. M., Clarke, L. E., BondLamberty, B. and co-authors. 2009. Implications of limiting CO2 concentrations for land use and energy. Science. 324, 1183 1186.
    • Yokohata, T., Annan, J. D., Hargreaves, J. C., Jackson, C. S., Tobis, M. and co-authors. 2011. Reliability of multi-model and structurally different single-model ensembles. Clim. Dyn. 39(3 4), 599 616. DOI: 10.1007/s00382-011-1203-1.
    • Yoshikawa, C., Kawamiya, M., Kato, T., Yamanaka, Y. and Matsuno, T. 2008. Geographical distribution of the feedback between future climate change and the carbon cycle. J. Geophys. Res. 113, G03002. DOI: 10.1029/2007JG000570.
    • Zheng, D. L., Prince, S. D. and Wright, R. 2003. NPP MultiBiome: gridded estimates for selected regions worldwide, 1989 2001, R1. Online at: http://daac.ornl.gov/cgi-bin/dsviewer.pl? ds_id 614, the Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. DOI: 10. 3334/ORNLDAAC/614.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    46
    46%
    49
    49%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article