Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jianjun Tian; Guozhong Cao (2013)
Publisher: Taylor & Francis Group
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: quantum dot–sensitized solar cell (QDSC), Review Article, photoelectrode, TP1-1185, quantum dot; solar cell; quantum dotsensitized solar cell (QDSC); quantum confinement; multiple exciton generation (MEG); photoelectrode, quantum confinement, quantum dot, Chemical technology, multiple exciton generation (MEG), quantum dot–sensitized solar cell (QDSC), solar cell
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.Keywords: quantum dot; solar cell; quantum dotsensitized solar cell (QDSC); quantum confinement; multiple exciton generation (MEG); photoelectrode(Published: 31 October 2013)Citation: Nano Reviews 2013, 4: 22578 - http://dx.doi.org/10.3402/nano.v4i0.22578
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Graetzel M, Janssen RAJ, Mitzi DB, Sargent EH. Materials interface engineering for solution-processed photovoltaics. Nature 2012; 488: 304 12.
    • 2. Tada H, Fujishima M, Kobayashi H. Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion. Chem Soc Rev 2011; 40: 4232 43.
    • 3. Santra PK, Kamat PV. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J Am Chem Soc 2012; 134: 2508 11.
    • 4. Hossain MA, Jennings JR, Koh ZY, Wang Q. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. Acs Nano 2011; 5: 3172 81.
    • 5. Ryu J, Lee SH, Nam DH, Park CB. Rational design and engineering of quantum-dot-sensitized TiO2 nanotube arrays for artificial photosynthesis. Adv Mater 2011; 23: 1883 8.
    • 6. Sugaya T, Numakami O, Oshima R, Furue S, Komaki H, Amano T, et al. Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells. Energy Environ Sci 2012; 5: 6233 7.
    • 7. Kamat PV. Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 2013; 4: 908 18.
    • 8. Oregan B, Gratzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991; 353: 737 40.
    • 9. Bessho T, Yoneda E, Yum JH, Guglielmi M, Tavernelli I, Imai H, et al. New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 2009; 131: 5930 4.
    • 10. Bomben PG, Robson KCD, Sedach PA, Berlinguette CP. On the viability of cyclometalated Ru(II) complexes for light-harvesting applications. Inorg Chem 2009; 48: 9631 43.
    • 11. Johansson PG, Rowley JG, Taheri A, Meyer GJ. Longwavelength sensitization of TiO2 by ruthenium diimine compounds with low-lying pi* orbitals. Langmuir 2011; 27: 14522 31.
    • 12. Zhao HC, Harney JP, Huang YT, Yum JH, Nazeeruddin MK, Gratzel M, et al. Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells. Inorg Chem 2012; 51: 1 3.
    • 13. Kim J, Choi H, Nahm C, Moon J, Kim C, Nam S, et al. The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. J Power Sources 2011; 196: 10526 31.
    • 14. Panigrahi S, Basak D. Morphology driven ultraviolet photosensitivity in ZnO-CdS composite. J Colloid Interface Sci 2011; 364: 10 7.
    • 15. Robel I, Subramanian V, Kuno M, Kamat PV. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J Am Chem Soc 2006; 128: 2385 93.
    • 16. Shen Q, Kobayashi J, Diguna LJ, Toyoda T. Effect of ZnS coating on the photovoltaic properties of CdSe quantum dotsensitized solar cells. J Appl Phys 2008; 103: 084304.
    • 17. Plass R, Pelet S, Krueger J, Gratzel M, Bach U. Quantum dot sensitization of organic-inorganic hybrid solar cells. J Phys Chem B 2002; 106: 7578 80.
    • 18. Yu P, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ. Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B 2006; 110: 25451 4.
    • 19. Bang JH, Kamat PV. Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 2010; 20: 1970 6.
    • 20. Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J. Modeling high-efficiency quantum dot sensitized solar cells. Acs Nano 2010; 4: 5783 90.
    • 21. Yu X-Y, Liao J-Y, Qiu K-Q, Kuang D-B, Su C-Y. Dynamic study of highly efficient CdS/CdSe quantum dot-sensitized solar cells fabricated by electrodeposition. Acs Nano 2011; 5: 9494 500.
    • 22. Cheng CW, Karuturi SK, Liu LJ, Liu JP, Li HX, Su LT, et al. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small 2012; 8: 37 42.
    • 23. Zhu G, Pan L, Xu T, Sun Z. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave-assisted chemical bath deposition method. Acs Appl Mater Inter 2011; 3: 3146 51.
    • 24. Lee YL, Lo YS. Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Adv Funct Mater 2009; 19: 604 9.
    • 25. Tian JJ, Gao R, Zhang QF, Zhang SG, Li YW, Lan JL, et al. Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C 2012; 116: 18655 62.
    • 26. Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 2008; 112: 18737 53.
    • 27. Tvrdy K, Frantsuzov PA, Kamat PV. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc Natl Acad Sci U S A 2011; 108: 29 34.
    • 28. Chakrapani V, Baker D, Kamat PV. Understanding the role of the sulfide redox couple (S2-/S-n(2-)) in quantum dot-sensitized solar cells. J Am Chem Soc 2011; 133: 9607 15.
    • 29. Zhang Q, Uchaker E, Candelaria SL, Cao G. Nanomaterials for energy conversion and storage. Chem Soc Rev 2013; 42: 3127 71.
    • 30. Baskoutas S, Terzis AF. Size-dependent band gap of colloidal quantum dots. J Appl Phys 2006; 99: 013708.
    • 31. Segets D, Lucas JM, Taylor RNK, Scheele M, Zheng H, Alivisatos AP, et al. Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. Acs Nano 2012; 6: 9021 32.
    • 32. Moreels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, et al. Size-dependent optical properties of colloidal PbS quantum dots. Acs Nano 2009; 3: 3023 30.
    • 33. Wood V, Bulovic´ V. Colloidal quantum dot light-emitting devices. Nano Rev 2010; 1: 5202.
    • 34. Panzer MJ, Aidala KE, Bulovic´ V. Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices. Nano Rev 2012; 3: 16144.
    • 35. Shibu E, Sonoda A, Tao Z, Feng Q, Furube A, Masuo S, et al. Energy materials: supramolecular nanoparticles for solar energy harvesting. Nano Rev 2013; 4: 2107.
    • 36. Lee JRI, Meulenberg RW, Hanif KM, Mattoussi H, Klepeis JE, Terminello LJ, et al. Experimental observation of quantum confinement in the conduction band of CdSe quantum dots. Phys Rev Lett 2007; 98: 146803.
    • 37. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe TiO2 architecture. J Am Chem Soc 2008; 130: 4007 15.
    • 38. Xu Y, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 2000; 85: 543 56.
    • 39. Kim SH, Markovich G, Rezvani S, Choi SH, Wang KL, Heath JR. Tunnel diodes fabricated from CdSe nanocrystal monolayers. Appl Phys Lett 1999; 74: 317 9.
    • 40. Nozik AJ. Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 2010; 10: 2735 41.
    • 41. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J, Nozik AJ, et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 2011; 334: 1530 3.
    • 42. Beard MC. Multiple exciton generation in semiconductor quantum dots. J Phys Chem Lett 2011; 2: 1282 8.
    • 43. Huang X, Huang S, Zhang Q, Guo X, Li D, Luo Y, et al. A flexible photoelectrode for CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). Chem Commun 2011; 47: 2664 6.
    • 44. Yang Z, Zhang Q, Xi J, Park K, Xu X, Liang Z, et al. CdS/CdSe co-sensitized TiO2 solar cell prepared by jointly using the successive ion layer absorption and reaction (SILAR) method and chemical bath deposition (CBD) process. Sci Adv Mater 2012; 4: 1013 7.
    • 45. Etgar L. Semiconductor nanocrystals as light harvesters in solar cells. Materials 2013; 6: 445 59.
    • 46. Hossain MA, James RJ, Shen C, Jia PH, Koh ZY, Mathews N, et al. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting 5% efficiency: redundancy of CdS buffer layer. J Mater Chem 2012; 22: 16235 42.
    • 47. Lee J-W, Son D-Y, Ahn TK, Shin H-W, Kim IY, Hwang S-J, et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep 2013; 3: 1050.
    • 48. Chou TP, Zhang QF, Fryxell GE, Cao GZ. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 2007; 19: 2588 92.
    • 49. Zhang QF, Cao GZ. Hierarchically structured photoelectrodes for dye-sensitized solar cells. J Mater Chem 2011; 21: 6769 74.
    • 50. Zhang QF, Chou TR, Russo B, Jenekhe SA, Cao GZ. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed 2008; 47: 2402 6.
    • 51. Zhang QF, Dandeneau CS, Zhou XY, Cao GZ. ZnO nanostructures for dye-sensitized solar cells. Adv Mater 2009; 21: 4087 108.
    • 52. Zhang QF, Yodyingyong S, Xi JT, Myers D, Cao GZ. Oxide nanowires for solar cell applications. Nanoscale 2012; 4: 1436 45.
    • 53. Seol M, Kim H, Tak Y, Yong K. Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem Commun 2010; 46: 5521 3.
    • 54. Seol M, Ramasamy E, Lee J, Yong K. Highly efficient and durable quantum dot sensitized ZnO nanowire solar cell using noble-metal-free counter electrode. J Phys Chem C 2011; 115: 22018 24.
    • 55. Yao C-Z, Wei B-H, Meng L-X, Li H, Gong Q-J, Sun H, et al. Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core-shell nanorod arrays on fluorine-doped tin oxide. J Power Sources 2012; 207: 222 8.
    • 56. Bora T, Kyaw HH, Dutta J. Zinc oxide-zinc stannate core-shell nanorod arrays for CdS quantum dot sensitized solar cells. Electrochim Acta 2012; 68: 141 5.
    • 57. Cheng HM, Huang KY, Lee KM, Yu P, Lin SC, Huang JH, et al. High-efficiency cascade CdS/CdSe quantum dotsensitized solar cells based on hierarchical tetrapod-like ZnO nanoparticles. Phys Chem Chem Phys 2012; 14: 13539 48.
    • 58. Tian JJ, Zhang QF, Zhang LL, Gao R, Shen LF, Zhang SG, et al. ZnO/TiO2 nanocable structured photoelectrodes for CdS/ CdSe quantum dot co-sensitized solar cells. Nanoscale 2013; 5: 936 43.
    • 59. Tian JJ, Zhang QF, Zhang LL, Gao R, Shen LF, Zhang SG, et al. Energy materials: core/shell structural photoelectrodes assembled with quantum dots for solar cells. Nano Rev 2013; 4: 21080.
    • 60. Irannejad A, Janghorban K, Tan OK, Huang H, Lim CK, Tan PY, et al. Effect of the TiO2 shell thickness on the dye-sensitized solar cells with ZnO TiO2 core-shell nanorod electrodes. Electrochim Acta 2011; 58: 19 24.
    • 61. Tian JJ, Zhang QF, Uchaker E, Gao R, Qu XH, Zhang SG, et al. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy Environ Sci 2013, in press; DOI: 10.1039/C3EE41056K.
    • 62. Tian JJ, Zhang QF, Uchaker E, Liang ZQ, Gao R, Qu XH, et al. Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. J Mater Chem A 2013; 1: 6770 5.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article