Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Crutzen, paul J.; Lawrence, Mark G.; Pöschl, Ulrich (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
We present a largely tutorial overview of the main processes that influence the photochemistry of the background troposphere. This is mostly driven by the photolysis of ozone by solar ultraviolet radiation of wavelengths shorter than about 340 nm, resulting in production of excited O(1D) atoms, whose reaction with water vapor produces OH radicals. In the background atmosphere the OH radicals mostly react with CO, and with CH4 and some of its oxidation products, which in turn are oxidized by OH. Depending on the availability of NOx, catalysts, ozone may be produced or destroyed in amounts that are much greater than the downward flux of ozone from the stratosphere to the troposphere. Using the 3D chemical-transport model MATCH, global distributions and budget analyses are presented for tropospheric O3, CH4, CO, and the “odd hydrogen” compounds OH, HO2 and H2O2. We show that OH is present in maximum concentrations in the tropics, and that most of the chemical breakdown of CO and CH4 also occurs in equatorial regions. We also split the troposphere into continental and marine regions, and show that there is a tremendous difference in photochemical O3 and OH production for these regions, much larger than the difference between the northern hemisphere and southern hemisphere. Finally, we show the results from a numerical simulation in which we reduced the amount of ozone in the model stratosphere by a factor of 10 (which in turn reduced the flux of O3 into the troposphere by about the same factor). Nevertheless, for summer conditions, model calculated O3 mixing ratios below 5 km in the mid to high latitudes were about 70–90% as high as those calculated with the full downward flux of ozone from the stratosphere. This indicates that, at least under these conditions, O3 concentrations in the lower troposphere are largely controlled by in situ photochemistry, with only a secondary influence from stratospheric influx.DOI: 10.1034/j.1600-0889.1999.00010.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bates, T. S., Kelly, K. C., Johnson, J. E. and Gammon, R. H. 1995. Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere, J. Geophys. Res. 100, 23,093-23,101.
    • Baughcum, S. L., Henderson, S. C., Hertel, P. S., Maggiora, D. R. and Oncina, C. A. 1987. Stratospheric emissions eVects database development. NASA CR-4592, 1994.
    • Beekmann, M., Ancellet, G., Blonsky, S., DeMuer, D., Ebel, A., Elbern, H., Hendricks, J., Kowol, J., Mancier, C., Sladkovic, R., Smit, H. G. J., Speth, P., Trickl, T. and Van Haver, P. 1997. Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem. 28, 29-44.
    • Benkovitz, C. M, Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A. and Graedel, T. E. 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29,239-29,253.
    • Crutzen, P, J. 1973. A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys. 106-108, 1385-1399.
    • Crutzen, P. J. and Andreae, M. O. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250, 1669-1678.
    • Crutzen, P. J. and Gidel, L. T. 1983. A two-dimensional photochemical model of the atmosphere (2) The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl, and the eVects of various NOx sources on tropospheric ozone. J. Geophys. Res. 88, 6641-6661.
    • Crutzen, P. J. and Zimmermann, P. H. 1991. The changing photochemistry of the troposphere. T ellus 43A/B, 136-151.
    • DeMore, W. B., Sander, S. P., Howard, C. J., Ravishankara, A. R., Golden, D. M., Kolb, C. E., Hampson, R. F., Kurylo, M. J. and Molina, M. J. 1997. Chemical kinetics and photochemical data for use in stratospheric modeling. NASA JPL (Jet Propulsion Laboratory), Pasadena, California, USA.
    • Dentener, F. J. and Crutzen, P. J. 1993. Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH. J. Geophys. Res. 98, 7149-7163.
    • Dignon, J. and Penner, J. E. 1991. Biomass burning. A source of nitrogen oxides in the atmosphere. In: Global biomass burning: atmospheric, climate, and biospheric implications (ed. J. S. Levine). MIT Press, Cambridge, USA, 370-375.
    • Dlugokencky, E. J., Steele, L. P., Lang, P. M. and Masarie, K. A. 1994. The growth and distribution of atmospheric methane. J. Geophys. Res. 99, 17021-17043.
    • Ebel, A., Elbern, H., Hendricks, J. and Meyer, R. 1996. Stratosphere-troposphere exchange and its impact on the structure of the lower stratosphere. J. Geomag. Geoelectr. 48, 135-144.
    • Fabian, P. and Junge, C. E. 1970. Global rate of ozone destruction at the earth's surface. Arch. Met. Geoph. Biokl., Serie A, 19, 161-172.
    • Fung, I. et al. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96, 13,033-13,065.
    • Gettelman, A., Holton, J. R. and Rosenlof, K. H. 1997. Mass fluxes of O3, CH4, N2O, and CF2Cl2 in the lower stratosphere calculated from observational data. J. Geophys. Res. 102, 19,149-19,159.
    • Ganzeveld, L. and Lelieveld, J. 1995. Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. J. Geophys. Res. 100, 20,999-21,012.
    • Guenther, A. et al. 1995. A global model of natural volatile organic compound emissions. J. Geophys. Res. 100, 8,873-8,892.
    • Hack, J. J. 1994. Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res. 99, 5551-5568.
    • Hameed, S. and Dignon, J. 1991. Global emissions of nitrogen and sulphur oxides in fossil fuel combustion 1970-1986. J. Air Waste Manage. Assoc. 42, 159-163.
    • Hao, W. M. and Liu, M.-H. 1994. Spatial and temporal distribution of tropical biomass burning. Glob. Biogeochem. Cycles 8, 495-503.
    • Holtslag, A. A. M. and Boville, B. A. 1993. Local versus nonlocal boundary-layer diVusion in a global climate model. J. Climate 6, 1825-1842.
    • Houweling, S., Dentener, F. and Lelieveld, J. 1998. The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry. J. Geophys. Res. 103, 10673-10696.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collings, W., Deavan, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgens, W., Janawiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met Soc. 77, 437-471.
    • Kley, D., Crutzen, P. J., Smit, H. G. J., Voemel, H., Oltmans, S. J.,Grassl, H. and Ramanathan, V. 1996. Observations of near-zero ozone concentrations over the convective Pacific: EVects on air chemistry. Science 274, 230-233.
    • Komhyr, W. D., Oltmans, S. J., Franchois, P. R., Evans, W. F. J. and Matthews, W. A. 1989. The latitudinal distribution of ozone to 35 km altitude form ECC ozonesonde observations, 1985-1987. In: Ozone in the atmosphere edited by R. D. Bojkov and P. Fabian, pp. 147-150.
    • Krol, M., Van Leeuwen, P. J. and Lelieveld, J. 1998. Global OH trend inferred from methylchloroform measurements. J. Geophys. Res. 103, 10697-10711.
    • Landgraf, J. and Crutzen, P. J. 1998. An eYcient method of online calculation of photolysis and heating rates. J. Atmos. Sci. 55, 863-878.
    • Lawrence, M. G. 1996. Photochemistry in the tropical Pacific troposphere. Studies with a global 3D chemistrymeteorology model. Doctoral dissertation. Georgia Institute of Technology, 520 pp.
    • Lawrence, M. G. and Crutzen, P. J. 1998. The impact of cloud particle gravitational settling on soluble trace gas distributions. T ellus 50B, 263-289.
    • Lawrence, M. G., Chameides, W.L., Kasibhatla, P.S., Levy, H., II and Moxim, W. 1995. Lightning and atmospheric chemistry: the rate of atmospheric NO production. In: Handbook of atmospheric electrodynamics (ed. H. Volland). CRC Press, Inc., Boca Raton, USA, 189-202.
    • Levy, H., II, 1971. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173, 141-143.
    • Levy, H., II, Mahlman, J. D., Moxim, W. J. and Liu, S. C. 1985. Tropospheric ozone: The r oˆle of transport. J. Geophys. Res. 90, 3753-3772.
    • Mahowald, N. M., Rasch, P. J, Eaton, B. E., Whittlestone, B. and Prinn, R. G. 1997. Transport of 222 Radon to the remote troposphere using MATCH and assimilated winds from ECMWF and NCEP/ NCAR. J. Geophys. Res. 102, 28,139-28,152.
    • Michelson, H. A., Salawitch, R. J., Wennberg, P. O. and Anderson, J. G. 1994. Production of O(1D) from photolysis of O3 . Geophys. Res. L ett. 21, 2227-2230.
    • Montzka, S. A. et al. 1996. Decline in the tropospheric abundance of halogens from halocarbons: Implications for stratospheric ozone depletion. Science 272, 1318-1322.
    • Murphy, D. M. and Fahey, D. W. 1994. An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposhere. J. Geophys. Res. 99, 5325-5332.
    • Murphy, D. M., Fahey, D. W., ProYtt, M. H., Liu, S. C., Chan, K. R., Eubank, C. S., Kawa, S. R. and Kelly, K. K. 1993. Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere. J. Geophys. Res. 98, 8751-8773.
    • Olivier, J. G. J., Bouwman, A. F., Van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J. and Haverlag, J. L. 1996. Description of EDGAR Version 2.0. A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1×1 grid. RIVM/TNO report, December 1996. RIVM, Bilthoven, RIVM report nr. 771060 002 (TNO MEP report nr. R96/119).
    • Parrish, D. D., Holloway, J. S., Trainer, M., Murphy, P. C., Forbes, G. L. and Fehsenfeld, F. C. 1993. Export of North American ozone pollution to the North Atlantic Ocean. Science 267, 1436-1439.
    • Price, C. and Rind, D. 1992. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. 97, 9919-9933.
    • Price, C., Penner, J. and Prather, M. 1997. NOx from lightning (1). Global distribution based on lightning physics J. Geophys. Res. 102, 5929-5941.
    • Prinn, R. G. Weiss, R. F., Miller, B. R., Huang, J., Aylea, F. N., Cunnold, D. M., Fraser, P. J., Hartley, D. E. and Simmonds, P. G. 1995. Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations. Science 269, 187-190.
    • Rasch, P. J., Mahowald, N. M. and Eaton, B. E. 1997. Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res. 102, 28127-28138.
    • Rasch, P. J. and Kristjansson, J. E. 1998. A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, in press.
    • Rasch, P. J. and Lawrence, M. 1998. Recent developments in transport methods at NCAR. In: MPI-Hamburg report No. 265 (ed. B. Machenhauer), pp. 65-75.
    • Roelofs, G.-J. and Lelieveld, J. 1995. Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. J. Geophys. Res. 100, 20,983-20,998.
    • Roelofs, G.-J. and Lelieveld, J. 1997. Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels. T ellus 49B, 38-55.
    • Roelofs, G.-J., Lelieveld, J. and Ganzeveld, L. 1998. Simulation of global sulfate distribution and the influence on eVective cloud drop radii with a coupled photochemistry-sulfur model. T ellus 50B, 224-242.
    • Schultz, M., Jacob, D. J., Logan, J. A., Wang, Y., Blake, D. R. 1998. On the origin of tropospheric ozone and NOx over the tropical South Pacific. J. Geophys. Res., in press.
    • Thakur, A. N., Singh, H. B., Mariani, P., Chen, Y., Wang, Y., Jacob, D. J., Brasseur, G., Mueller, J.-F. and Lawrence, M. 1998. Distribution of reactive nitrogen species in the remote free troposphere: data and model comparisons. Atmos. Env., in press.
    • Tie, X. X. and Hess, P. 1997. Ozone mass exchange between the stratosphere and troposphere for background and volcanic sulfate aerosol conditions. J. Geophys. Res. 102, 25,487-25,500.
    • Wang, Y., Jacob, D. J. and Logan, J. A. 1998. Global simulation of tropospheric O3-NO−x-hydrocarbon chemistry (3). Origin of tropospheric ozone and eVects of nonmethane hydrocarbons. J. Geophys. Res. 103, 10757-10767.
    • Yienger, J. J. and Levy, H. II. 1995. Empirical model of global soil-biogenic NOx emissions. J. Geophys. Res. 100, 11,447-11,464.
    • Zhang, G. J. and McFarlane, N. A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos. Ocean 33, 407-446.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from