Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sandulescu, Mathias; Hernandez-Garcia, Emilio; Lopez, Cristobal; Feudel, Ulrike (2006)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects: Nonlinear Sciences - Chaotic Dynamics, Canary Islands, Physics - Atmospheric and Oceanic Physics, Wake, Chaotic Dynamics, Vorticity, Atmospheric and Oceanic Physics, Fluid Dynamics
Transport from nutrient-rich coastal upwellings is a key factor influencing biological activity in surrounding waters and even in the open ocean. The rich upwelling in the North-Western African coast is known to interact strongly with the wake of the Canary islands, giving rise to filaments and other mesoscale structures of increased productivity. Motivated by this scenario, we introduce a simplified two-dimensional kinematic flow describing the wake of an island in a stream, and study the conditions under which there is a net transport of substances across the wake. For small vorticity values in the wake, it acts as a barrier, but there is a transition when increasing vorticity so that for values appropriate to the Canary area, it entrains fluid and enhances cross-wake transport.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aref, H. 2002. The development of chaotic advection. Phys. Fluids 14, 1315-1325.
    • Ar´ıstegui, J., Tett, P., Herna´ndez-Guerra, A., Basterretxea, M., Montero, F., and co-authors. 1997. The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep Sea Res. I 44, 71-96.
    • Ar´ıstegui, J., Barton, E. D., Tett, P., Montero, F., Garc´ıa-Mun˜oz, M. and co-authors. 2004. Variability in plankton community structure, metabolism, and vertical carbon fluxes along an upwelling filament (Cape Juby, NW Africa). Prog. Oceanog. 62, 95-113.
    • Barton, E. D., Ar´ıstegui, J., Tett, P., Canton, M., Garc´ıa-Braun, J. and co-authors. 1998. The transition zone of the Canary Current upwelling region. Prog. Oceanog. 41, 455-504.
    • Barton, E. D., Ar´ıstegui, J., Tett, P. and Navarro-Pe´rez, E. 2004. Variability in the Canary Islands area of filament-eddy exchanges. Prog. Oceanog. 62, 71-94.
    • Bower, A. S. 1991. A simple kinematic mechanism for mixing fluid parcels across a meandering jet. J. Phys. Oceanogr. 21, 173-180.
    • Bower, A. S., Rossby, H. T. and Lillibridge, J. L. 1985. The Gulf Stream - barrier or blender? J. Phys. Oceanogr. 15, 26-32.
    • Buffoni, G., Falco, P., Griffa, A. and Zambianchi, E. 1997. Dispersion processes and residence times in a semi-enclosed basin with recirculating gyres: an application to the Tyrhenian Sea. J. Geophys. Res. 102, 18699-18713.
    • Cencini, M., Lacorata, G., Vulpiani, A. and Zambianchi, E. 1999, Mixing in a meandering Jet: a markovian approximation. J. Phys. Oceanogr. 29, 2578-2594.
    • Duan, J. and Wiggins, S. 1997. Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics. Nonlinear Proc. Geophys. 4, 125-136.
    • Falco, P., Griffa, A., Poulain, P. M. and Zambianchi, E. 2003. Transport properties in the Adriatic Sea as deduced from drifter data. J. Phys. Oceanogr. 30, 2055-2071.
    • Griffa, A. 1996. Applications of stochastic particle models to oceanographic problems. In: Stochastic Modelling in Physical Oceanography, (eds.R. J., Adler, P., Muller and B. L., Rozovskii), Birkhauser, Boston, 114-140.
    • Jung, C., Te´l, T. and Ziemniak, E. 1993. Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos 3, 555- 568.
    • Mariano, A. J., Griffa, A., O¨zgo¨kmen, T. M. and Zambianchi, E. 2002. Lagrangian analysis and predictability of coastal and ocean dynamics. J. Atmos. Ocean. Tech. 19, 1114-1125.
    • Meyers, S. D. 1994. Cross-frontal mixing in a meandering jet. J. Phys. Oceanogr. 24, 1641-1646.
    • Miller, P. D., Pratt, L. J., Helfrich, K. R. and Jones, C.K.R.T. 2002. Chaotic transport of mass and potential vorticity for an island recirculation. J. Phys. Oceanogr. 32, 80-102.
    • Okubo, A. 1971. Oceanic diffusion diagrams. Deep-Sea Res. 18, 789- 802.
    • Ottino, J. M. 1989. The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge Univ. Press, Cambridge.
    • Pelegr´ı, J. L., Ar´ıstegui, J., Cana, L., Gonza´lez-Da´vila, M., Herna´ndezGuerra, A. and co-authors. 2005. Coupling between the open ocean and the coastal upwelling region off northwest Africa: water recirculation and offshore pumping of organic matter. J. Mar. Sys. 54, 3-37.
    • Rogerson, A. M., Miller, P. D., Pratt, L. J. and Jones, C.K.R.T. 1999. Lagrangian motion and fluid exchange in a barotropic meandering jet. J. Phys. Oceanogr. 29, 2635-2655.
    • Samelson, R. M. 1992. Fluid exchange across a meandering jet. J. Phys. Oceanogr. 22, 431-440.
    • Shariff, K. T., Pulliam, T. and Ottino, J. 1992. A dynamical systems analysis of kinematics in the time-periodic wake of a circular cylinder. In: Vortex Dynamics and vortex methods, Proc. AMS-SIAM Conf., Lectures in Applied Mathematics, (eds.C., Anderson and C., Greengard), American Mathematical Society, Providence.
    • Wiggins, S. 1992. Chaotic Transport in Dynamical Systems, Springer Verlag, New York.
    • Ziemniak, E., Jung, C. and Te´l, T. 1994. Tracer dynamics in open hydrodynamical flows as chaotic scattering. Physica D 76, 424.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article