Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Grewe, Volker; Dameris, Martin; Hein, Ralf; Sausen, Robert; Steil, Benedikt (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The development of the future atmospheric chemical composition is investigated with respect to NOy and O3 by means of the off-line coupled dynamic-chemical general circulation model ECHAM3/CHEM. Two time slice experiments have been performed for the years 1992 and 2015, which include changes in sea surface temperatures, greenhouse gas concentrations, emissions of CFCs, NOx and other species, i.e., the 2015 simulation accounts for changes in chemically relevant emissions and for a climate change and its impact on air chemistry. The 2015 simulation clearly shows a global increase in ozone except for large areas of the lower stratosphere, where no significant changes or even decreases in the ozone concentration are found. For a better understanding of the importance of (A) emissions like NOx and CFCs, (B) future changes of air temperature and water vapour concentration, and (C) other dynamical parameters, like precipitation and changes in the circulation, diabatic circulation, stratosphere-troposphere-exchange, the simulation of the future atmosphere has been performed stepwise. This method requires a climate-chemistry model without interactive coupling of chemical species. Model results show that the direct effect of emissions (A) plays a major rôle for the composition of the future atmosphere, but they also clearly show that climate change (B and C) has a significant impact and strongly reduces the NOy and ozone concentration in the lower stratosphere.DOI: 10.1034/j.1600-0889.2001.d01-10.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bojkov, R. D. and Fioletov, V. E. 1995. Estimating the global ozone characteristics during the last 30 years. J. Geophys. Res. 100, 16,537-16,551.
    • Brasseur, G., Hitchman, M. H., Walters, S., Dymek, M., Falise, E. and Pirre, M. 1990. An interactive chemical dynamical radiative two-dimensional model of the middle atmosphere. J. Geophys. Res. 95, 5639-5655.
    • Brasseur, G. P., Kiehl, J. T., M u¨ller, J.-F., Schneider, T., Granier, C., Tie, X. X. and Hauglustaine, D. 1998. Past and future changes in global tropospheric ozone: Impact on radiative forcing. Geophys. Res. L ett. 25, 3807-3810.
    • Brunner, D. 1998. One-year climatology of nitrogen oxides and ozone in the tropopause region. Results from B-747 aircraft measurements. PhD thesis, 181 pp., Swiss Federal Institute of Technology (ETH), Z u¨rich, Switzerland.
    • Crutzen, P. J. 1995. An overview of atmospheric chemistry. In: T opics in atmospheric and interstellar chemistry. European Research Course on Atmospheres, ERCA Vol. 1, eds. C. Boutron, 63-88, Les Ulis, France.
    • Crutzen, P. J. and Zimmermann, P. H. 1991. The changing photochemistry of the troposphere. T ellus 43A/B, 136-151.
    • Dameris, M., Grewe, V., Hein, R. and Schnadt, C. 1998a. Assessment of the future development of the ozone layer. Geophys. Res. L ett. 25, 3579-3582.
    • Dameris, M., Grewe, V., K o¨hler, I., Sausen, R., Br u¨hl, C., Grooß, J.-U. and Steil, B. 1998b. Impact of aircraft NOx-emissions on tropospheric and stratospheric ozone. Part II: 3-D model results. Atmos. Environ. 32, 3185-3200.
    • Dentener, F. J. and Crutzen, P. J. 1993. Reaction of N2O5 on tropospheric aerosols: Impact on global distributions of NOx, O3, and OH. J. Geophys. Res. 98, 7149-7163.
    • Emmons, L. K., Carroll, M. A., Hauglustaine, D. A., Brasseur, G. P., Atherton, C., Penner, J., Sillman, S., Levy II., H., Rohrer, F., Wauben, W. M. F., van Velthoven, P. F. J., Wang, Y., Jacob, D., Bakwin, P., Dickerson, R., Doddridge, B., Gerbig, C., Honrath, R., H u¨bler, G., JaVe, D., Kondo, Y., Munger, J. W., Torres, A. and Volz-Thomas, A. 1997. Climatologies of NOx and NOy: Comparison of data and models. Atmos. Environ. 31, 1851-1904.
    • Fishman, J. and Crutzen, P. J. 1978. The origin of ozone in the troposphere. Nature 274, 853-858.
    • Fishman J., Ramanathan, V., Crutzen, P. J. and Liu, S. C. 1979. Tropospheric ozone and climate. Nature 282, 818-820.
    • Fuglestvedt, J. S., Berntsen, T. K., Isaksen, I. S. A., Mao, H., Liang, X.-Z. and Wang, W.-C. 1999. Climatic forcing of nitrogen oxides through changes in tropospheric ozone and methane; global 3D model studies. Atmos. Environ. 33, 961-977.
    • Gates, W. L. 1992. AMIP: The atmosphere model intercomparison project. Bull. Amer. Meteor. Soc. 73, 1962-1970.
    • Grewe, V. and Dameris, M. 1996. Calculating the global mass exchange between stratosphere and troposphere. Ann. Geophys. 14, 431-442.
    • Grewe, V. and Dameris, M. 1997. Heterogeneous PSC ozone loss during an ozone mini-hole. Geophys. Res. L ett. 24, 2503-2506.
    • Grewe, V., Dameris, M., Sausen, R. and Steil, B. 1998. Impact of stratospheric dynamics and chemistry on northern midlatitude ozone loss. J. Geophys. Res. 103, 25,417-25,433.
    • Grewe, V., Dameris, M., Hein, R., K o¨hler, I. and Sausen, R. 1999a. Impact of future subsonic NOx emissions on the atmospheric composition. Geophys. Res. L ett. 26, 47-50.
    • Grewe, V., Rogers, H., Pyle, J. and Sausen, R. 1999b. Stratosphere-Troposphere-Exchange. In: AEROCHEM Final Report, ed. I. Isaksen, ENV4-CT95-0144EUR, Luxemburg, 44-49.
    • Grooß, J.-U., Br u¨hl, C. and Peter, T. 1998. Impact of aircraft NOx-emissions on tropospheric and stratospheric ozone. Part I: Chemistry and 2-D model results. Atmos. Environ. 32, 3173-3184.
    • Hanson, D. and Mauersberger, K. 1988. Laboratory studies of nitric acid trihydrate: Implications for the south polar stratosphere. Geophys. Res. L ett. 15, 855-858.
    • Hansen, J., et al. 1997. Forcings and chaos in interannual to decadal climate change. J. Geophys. Res. 102, 25,679-25,720.
    • Hough, A. M. and Derwent, R. G. 1990. Changes in global concentration of tropospheric ozone due to human activities. Nature 344, 645-648.
    • Houweling, S. 1999. Global modeling of atmospheric methane sources and sinks. PhD thesis, University of Utrecht, Netherlands, 171 pp.
    • IPCC (Intergovernmental Panel on Climate Change). 1996. Climate change 1995, eds. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Cambridge University Press, New York.
    • IPCC (Intergovernmental Panel on Climate Change). 1999. Special report on aviation and the global atmosphere, ed. J. T. Houghton, Cambridge University Press, New York.
    • Jacob, D. J., Heikes, B. G., Fan. S.-M., Logan, J. A., Mauzerall, D. L., Bradshaw, J. D., Singh, H. B., Gregory, G. L., Talbot, R. W., Blake, D. R. and Sachse, G. W. 1996. Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. J. Geophys. Res. 101, 24,235-24,250.
    • Johnson, C. E., Collins, W. J., Stevenson, D. S. and Derwent, R. G. 1999. The relative roles of climate and emission changes on future tropospheric oxidant concentrations. J. Geophys. Res. 104, 18,631-18,645.
    • Kattenberg, A., Giorgi, F., Grassl, H., Mehl, G. A., Mitchell, J. F. B., StouVer, R. J., Tokioka, T., Weaver, A. J. and Wigley, T. M. L. 1996. Climate models - Projections of future climate. In: Intergovernmental Panel on climate change (IPCC), Climate change 1995, eds. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Cambridge University Press, New York, 285-358.
    • Ko¨ hler, I., Sausen, R., Grewe, V. and Ziereis, H. 1998. Intercomparison of global model simulations and aircraft measurements in the NAFC. In: Pollution from aircraft emissions in the North Atlantic flight corridor (POL INAT 2), ed. U. Schumann, EUR 18877 EN, Luxemburg, 217-232.
    • Lee, D. S., K o¨hler, I., Grobler, E., Rohrer, F., Sausen, R., Gallardo-Klenner, L., Olivier, J. J. G., Dentener, F. J. and Bouwman, A. F. 1997. Estimations of global NOx emissions and their uncertainties. Atmos. Environ. 31, 1735-1749.
    • Leggett, J., Pepper, W. J. and Swart, R. J. 1992. Emissions scenarios for the IPCC: an update. In: Climate change 1992. T he supplementary report to the IPCC scientific assessment, eds. J. T. Houghton et al., Cambridge University Press, Cambridge, U.K., 69-95.
    • Lin, X., Trainer, M. and Liu, S. C. 1988. On the nonlinearity of the tropospheric ozone production. J. Geophys. Res. 93, 15,879-15,888.
    • Manabe, S., StouVer, R. J., Spelman, M. J. and Byan, K. 1991. Transient responses of a coupled oceanatmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean responses. J. Climate 4, 785-818.
    • Manabe, S., Spelman, M. J. and StouVer, R. J. 1992. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2 . Part II: Seasonal response. J. Climate 5, 105-126.
    • Mitchell, J. F. B., Johns, T. C. and Senior, C. A. 1998. T ransient response to increasing greenhouse gases using models with and without flux adjustment. Hadley Centre for Climate Prediction and Research, Technical Note 2, 26 pp, Bracknell, United Kingdom.
    • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn, W., Lacis, A., Luther, F., Mahlman, J., Reck, R. and Schlesinger, M. 1987. Climatechemistry interactions and the eVects of changing atmospheric trace gases. Rev. Geophys. 25, 1441-1482.
    • Rasch, P. J. and Williamson, D. L. 1990. Computational aspects of moisture transport in global models of the atmosphere. Q. J. Roy. Meteorol. Soc. 116, 1071-1090.
    • Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Du¨ menil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S. and Windelband, M. 1992. Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Rep. 93, MaxPlanck-Inst. f u¨r Meteorol., Hamburg, Germany.
    • Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld, J. and Rodhe, H. 1999. Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Climate 12, 3004-3042.
    • Roelofs, G.-J. and Lelieveld, J. 1995. Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model. J. Geophys. Res. 100, 20,983-20,998.
    • Roelofs, G.-J., Lelieveld, J. and Feichter, J. 1999. Model simulations of the changing distribution of ozone and its radiative forcing of climate: past, present, and future. Rep. 283, Max-Planck-Inst. f u¨r Meteorol., Hamburg, Germany.
    • Shindell, D. T., Rind, D. and Lonergan, P. 1998a. Climate change and the middle atmosphere. Part IV: Ozone response to doubled CO2. J. Climate 11, 895-918.
    • Shindell, D. T., Rind, D. and Lonergan, P. 1998b. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392, 589-592.
    • Steil, B. 1999. Modellierung der Chemie der globalen Strato- und T ropospha¨re mit einem drei-dimensionalen Zirkulationsmodell. PhD thesis, 205 pp., Max-PlanckInst. f u¨r Meteorol., Examensarbeit Nr. 62, Fachbereich Geowissenschaften, Univ. Hamburg, Hamburg, Germany.
    • Steil, B., Dameris, M., Br u¨hl, C., Crutzen, P. J., Grewe, V., Ponater, M. and Sausen, R. 1998. Development of a chemistry module for GCMs: First results of a multiannual integration. Ann. Geophys. 16, 205-228.
    • Stevenson, D. S., Johnson, C. E., Collins, W. J., Derwent, R. G., Shine, K. P. and Edwards, J. M. 1998. Evolution of tropospheric ozone radiative forcing. Geophys. Res. L ett. 25, 3819-3822.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779-1800.
    • Toumi, R., Haigh, J. D. and Law, K. S. 1996. A tropospheric ozone-lightning climate feedback. Geophys. Res. L ett. 23, 1037-1040.
    • Wang, C. and Prinn, R. G. 1997. Interactions among emissions, atmospheric chemistry, and climate change: Implications for future trends. MIT Joint program on the science and policy of global change, 25.
    • Wang, C. and Prinn, R. G. 1999. Impact of emissions, chemistry, and climate on atmospheric carbon monoxide: 100-year predictions from a global chemistryclimate model. Chemosphere Global Change Science 1, 77-81.
    • WMO (World Meteorological Organization). 1992. Scientific assessment of ozone depletion: 1991. WMO Rep. 25, Geneva, Switzerland.
    • Wuebbles, D. J. 1996. Three-dimensional chemistry in the greenhouse. Climatic Change 34, 397-404.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from