LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bjerhammar, Arne (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
The classical estimation procedure according to Gauss uses the inversion of non-singular matrices. The author has earlier presented a number of papers concerning the stochastical estimation with the use of singular inverses (Bjerhammar, 1948–1958). The present paper gives a review of the earlier contributions and an application to selected problems. For a geodetic network all points can be considered unknown and an estimate with a generalized inverse gives the minimum variance of the observations as well as the unknowns. This estimate is invariant with respect to rotations and translations, and therefore of special interest for the study of the optimum network. It is furthermore of interest because it eliminates the dependence on the coordinate system. A number of similar applications can be found in most sciences.DOI: 10.1111/j.2153-3490.1971.tb00603.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Boarda, W. 1949. Some remarks on the computation and adjustment of large systems of geodetic triangulation. Report to the IoU.G.G. at Rome, Netherlands Geodetic Commission.
    • Bjerhammar, A. 1948. NAgra synpunkter pA matriskalkylens anvandning inom utjimningsrakningen. [Some considerations regarding the application of the calculus of matrices to the method of least squares.] Svensk Lantmiiteritidakrift.
    • Bjerhammar, A. 1949. Metoder for forenkling av utjamningsrakningen enligt minsta kvadratprincipen. [Methods for simplification of adjustment by means of the method of least squares.] Svensk LantmiiteritidBkrift.
    • Bjerhammar, A. 1951. Application of calculus of matrices to method of least squares with special references to geodetic calculations. Trans. of the Royal Institute of Technology, Stockholm, no. 49.
    • Bjerhammar, A. 1955. En ny matrisalgebra. Svensk LantmiiteritidBkrift, 5-6.
    • Bjerhammar, A. 1958. A generalized matrix algebra. Stockholm.
    • Cramer, H. 1945. Mathematical methoda of 8tati8tics. Uppsala.
    • Doolittle, M. H. 1878. On least squares solutions. U.S.G.G.S., Annual Report, App. 8, Paper 3, II5-20.
    • Fox. L., Huskey, H. D. & Wilkinson, J. H. 1948. Notes on the solution of algebraic linear simulta· neous equations. Mech. App. Matka. 1, 149-73.
    • Greville, T. N. E. 1960. Some applications of the pseudoinverse of a matrix. SIAM Review Z, No. 1.
    • Grosamann, W. 1968. Grundzlige der Ausgleichungs· rechnung, nach der Methode der kleinsten Quadrate nebst Anwendungen in der Geodii.sie. Springer. Verlag, Berlin.
    • Helmert, F. R. 1872. Die Ausgleichungsrechnung nach der Methode der kleisten Quadrate. Leipzig.
    • Moore, E. H. 1935. General analysis. M em. Phil. Soc. 9.
    • Moritz, H. 1967. Statistical Analysis of Gravity Anomalies. Intern. Diet. of Geophy8., p. 1436 ff., Oxford.
    • Oktaba, W. 1969. Generalized inverses. Biom. ZeitBChr., II.
    • Penrose, R. A. 1955. A generalized inverse for matrices. Proc. Camb. phil. Soc. 51. 406-13.
    • Tienstra, J. M. 1947. An extension of the technique of the methods of least squares to correlated observations. Bull. Geod., 301-5.
    • Wolf, H. 1961/68. Ausgleichung nach der Methode der kleinsten Quadrate. Hamburg-Bonn.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from