LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hogg, Alan; Uddling, Johan; Ellsworth, David; Carroll, Mary Anne; Pressley, Shelley; Lamb, Brian; Vogel, Christoph (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Measurements of ozone, sensible heat, and latent heat fluxes and plant physiological parameters were made at a northern mixed hardwood forest located at the University of Michigan Biological Station in northern Michigan from June 27 to September 28, 2002. These measurements were used to calculate total ozone flux and partitioning between stomatal and non-stomatal sinks. Total ozone flux varied diurnally with maximum values reaching 100 μmol m-2 h-1 at midday and minimums at or near zero at night. Mean daytime canopy conductance was 0.5 mol m-2 s-1. During daytime, non-stomatal ozone conductance accounted for as much as 66% of canopy conductance, with the non-stomatal sink representing 63% of the ozone flux. Stomatal conductance showed expected patterns of behaviour with respect to photosynthetic photon flux density (PPFD) and vapour pressure defecit (VPD). Non-stomatal conductance for ozone increased monotonically with increasing PPFD, increased with temperature (T) before falling off again at high T, and behaved similarly for VPD. Day-time non-stomatal ozone sinks are large and vary with time and environmental drivers, particularly PPFD and T. This information is crucial to deriving mechanistic models that can simulate ozone uptake by different vegetation types.DOI: 10.1111/j.1600-0889.2007.00269.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Altimir, N., Kolari, P., Tuovinen, J. P., Vesala, T., Ba¨ck, J., and co-authors. 2005. Foliage surface ozone deposition: a role for surface moisture?. Biogeosciences Discussions 2, 1739-1793.
    • Altimir, N., Tuovinen, J. P., Vesala, T., Kulmala, M. and Hari, P. 2004. Measurements of ozone removal by Scots pine shoots: calibration of a stomatal uptake model including the non-stomatal component. Atmos. Environ. 38, 2387-2398.
    • Auble, D. L. and Meyers, T. P. 1992. an open path, fast response infraredabsorption gas analyzer for H2O and CO2. Boundary-Layer Meteorol. 59, 243-256.
    • Baldocchi, D. D., Fuentes, J. D., Bowling, D. R., Turnipseed, A. A. and Monson, R. K. 1999. Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest. J. Appl. Meteorol. 38, 885-898.
    • Bauer, M. R., Hultman, N. E., Panek, J. A. and Goldstein, A. H. 2000. Ozone deposition to a ponderosa pine plantation in the Sierra Nevada Mountains (CA): a comparison of two different climatic years. J. Geophys. Res.-Atmos. 105, 22123-22136.
    • Bovard, B. D., Curtis, P. S., Vogel, C. S., Su, H. B. and Schmid, H. P. 2005. Environmental controls on sap flow in a northern hardwood forest. Tree Physiol. 25, 31-38.
    • Campbell, G. S. and Norman, J. M. 1998. Introduction to Environmental Biophysics, Springer, New York.
    • Carroll, M. A., Bertman, S. B. and Shepson, P. B. 2001. Overview of the program for research on oxidants: photochemistry, emissions, and transport (PROPHET) summer 1998 measurements intensive. J Geophys. Res.-Atmos. 106, 24275-24288.
    • Choudhury, B. J. and Monteith, J. L. 1988. A 4-layer model for the heatbudget of homogeneous land surfaces. Quart. J. R. Met. Soc. 114, 373-398.
    • Cieslik, S. A. 2004. Ozone uptake by various surface types: a comparison between dose and exposure. Atmos. Environ. 38, 2409-2420.
    • Clough, P. N. and Thrush, B. A. 1967. Mechanism of chemiluminescent reaction between nitric oxide and ozone. Trans. Faraday Soc. 63, 915- 925.
    • Clyne, M. A. A. and Stedman, D. H. 1967. rate of recombination of nitrogen atoms. J. Phys. Chem. 71, 3071-3073.
    • Coe, H., Gallagher, M. W., Choularton, T. W. and Dore, C. 1995. Canopy scale measurements of stomatal and cuticular O-3 uptake by sitka spruce. Atmos. Environ. 29, 1413-1423.
    • Curtis, P. S., Vogel, C. S., Gough, C. M., Schmid, H. P., Su, H. B. and Bovard, B. D. 2005. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999-2003. New Phytologist 167, 437-455.
    • Emberson, L., Simpson, D., Tuovinen, J. P., Ashmore, M. R. and Cambridge, H. M. 2000, Towards a modell of ozone deposition and stomatal uptake over Europe. (EMEP/MSC-W, Note 6/00), Research Note no. 42, DNMI, Oslo, Norway.
    • Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and co-authors. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B, 230-248.
    • Finkelstein, P. L., Ellestad, T. G., Clarke, J. F., Meyers, T. P., Schwede, D. B., and co-authors. 2000. Ozone and sulfur dioxide dry deposition to forests: observations and model evaluation. J. Geophys. Res.-Atmos. 105, 15365-15377.
    • Fowler, D., Cape, J. N., Coyle, M., Smith, R. I., Hjellbrekke, A. G., and co-authors. 1999. Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environ. Pollut. 100, 43-55.
    • Fowler, D., Flechard, C., Cape, J. N., Storeton-West, R. L. and Coyle, M. 2001. Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air, Soil Pollut. 130, 63-74.
    • Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and co-authors 2005. Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy. Part I: micrometeorological flux measurements and flux partitioning. Atmos. Environ. 39, 3255-3266.
    • Goldstein, A. H., McKay, M., Kurpius, M. R., Schade, G. W., Lee, A. and co-authors. 2004. Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs. Geophys. Res. Lett. 31, Art. No. L22106.
    • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy. Global Change Biol. 2, 169-182.
    • Granat, L. and Richter, A. 1995. Dry deposition to pine of sulfur-dioxide and ozone at low concentration. Atmos. Environ. 29, 1677-1683.
    • Grantz, D. A., Zhang, X. J., Massman, W. J., Denhartog, G., Neumann, H. H., and co-authors. 1995. Effects of stomatal conductance and surface wetness on ozone deposition in field-grown. Atmos. Environ. 29, 3189-3198.
    • Jones, H. G. 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology 2nd Edition., Cambridge University Press, Cambridge, 428 pp.
    • Kaimal, J. C. and Finnigan, J. J. 1994. Atmospheric Boundary Layer Flows : Their Structure And Measurement, Vol. XIII, Oxford University Press, New York 289 pp.
    • Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., and co-authors. 2004. New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone. Atmos. Environ. 38, 2283-2294.
    • Karnosky, D. F., Mankovska, B., Percy, K., Dickson, R. E., Podila, G. K., and co-authors. 1999. Effects of tropospheric O-3 on trembling aspen and interaction with CO-2: results from an O-3- gradient and a face experiment. Water Air Soil Pollut. 116, 311- 322.
    • Karnosky, D. F., Percy, K. E., Xiang, B. X., Callan, B., Noormets, A. and co-authors. 2002. Interacting elevated CO-2 and tropospheric O-3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp tremuloidae). Global Change Biol. 8, 329-338.
    • Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., and co-authors. 2003. Tropospheric O-3 moderates responses of temperate hardwood forests to elevated CO-2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17, 289-304.
    • Kelliher, F. M., Kostner, B. M. M., Hollinger, D. Y., Byers, J. N., Hunt, J. E., and co-authors. 1992. Evaporation, xylem sap flow, and tree transpiration in a new-zealand broad-leaved forest. Agric. Forest Meteorol. 62, 53-73.
    • Ko¨rner, C. 1994. Leaf diffusive conductances in the major vegetation types of the globe., In: Ecophysiology of Photosynthesis. Ecological studies 100, (ed. E. D. Schulze and M. M. Caldwell). Springer-Verlag, Berlin, 463-490.
    • Kurpius, M. R. and Goldstein, A. H. 2003. Gas-phase chemistry dominates O-3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30, Art. No. 1371.
    • Kurpius, M. R., McKay, M. and Goldstein, A. H. 2002. Annual ozone deposition to a Sierra Nevada ponderosa pine plantation. Atmos. Environ. 36, 4503-4515.
    • Kuzma, J. and Fall, R. 1993. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol. 101, 435-440.
    • Lamaud, E., Carrara, A., Brunet, Y., Lopez, A. and Druilhet, A. 2002. Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmos. Environ. 36, 77-88.
    • Larcher, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, Springer, Berlin, New York, 513 pp.
    • Lloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S. C., and co-authors. 1995. A Simple calibrated model of amazon rain-forest productivity based on leaf biochemical-properties. Plant Cell Environ. 18, 1129- 1145.
    • Massman, W. J. 2004. Toward an ozone standard to protect vegetation based on effective dose: a review of deposition resistances and a possible metric. Atmos. Environ. 38, 2323-2337.
    • Matyssek, R. and Sandermann, H. 2003. Impact of ozone on trees: an ecophysiological perspective., In: Progress in Botany, (ed.K. Esser, et al.). Springer Verlag Heidelberg, 349-404.
    • Mikkelsen, T. N. and Ro-Poulsen, H. 2002. In situ autumn ozone fumigation of mature Norway spruce - Effects on net photosynthesis. Phyton-Annales Rei Botanicae 42, 97-104.
    • Mikkelsen, T. N., Ro-Poulsen, H., Hovmand, M. F., Jensen, N. O., Pilegaard, K., and co-authors. 2004. Five-year measurements of ozone fluxes to a Danish Norway spruce canopy. Atmos. Environ. 38, 2361- 2371.
    • Mikkelsen, T. N., Ro-Poulsen, H., Pilegaard, K., Hovmand, M. F., Jensen, N. O., and co-authors. 2000. Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms. Environ. Pollut. 109, 423-429.
    • Monson, R. K., Jaeger, C. H., Adams, W. W., Driggers, E. M., Silver, G. M., and co-authors. 1992. Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol. 98, 1175-1180.
    • Monteith, J. L. and Unsworth, M. H. 1990. Principles of Environmental Physics, Edward Arnold, London, 291 pp.
    • Moody, J. L. and Samson, P. J. 1989. The influence of atmospheric transport on precipitation chemistry at 2 sites in the midwestern UnitedStates. Atmos. Environ. 23, 2117-2132.
    • Moore, K. E., Fitzjarrald, D. R., Sakai, R. K., Goulden, M. L., Munger, J. W., and co-authors. 1996. Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J. Appl. Meteorol. 35, 122-134.
    • Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S. M., Goulden, M. L., and co-authors. 1996. Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic Woodland .1. Measurements and mechanisms. J. Geophys. Res.-Atmos. 101, 12639-12657.
    • Niinemets, U., Loreto, F. and Reichstein, M. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends Plant Sci. 9, 180-186.
    • Paulson, S. E., Flagan, R. C. and Seinfeld, J. H. 1992a. Atmospheric photooxidation of isoprene .1. The hydroxyl radical and ground-state atomic oxygen reactions. Int. J. Chem. Kinetics 24, 79-101.
    • Paulson, S. E., Flagan, R. C. and Seinfeld, J. H. 1992b. Atmospheric Photooxidation of isoprene .2. The ozone-isoprene reaction. Int. J. Chem. Kinetics 24, 103-125.
    • Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., and co-authors. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O-3. Nature 420, 403-407.
    • Percy, K. E., Legge, A. H. and Krupa, S. V. 2003. Tropospheric ozone: a continuing threat to global forests?., In: Air Pollution, Global Change and Forests in the New Millenium (ed. D. F. Karnosky, et al.). Elsevier Ltd., Oxford, 85-118.
    • Pleijel, H., Karlsson, G. P., Danielsson, H. and Sellden, G. 1995. Surface wetness enhances ozone deposition to a pasture canopy. Atmos. Environ. 29, 3391-3393.
    • Pressley, S., Lamb, B., Westberg, H., Flaherty, J., Chen, J., and co-authors. 2005. Long-term isoprene flux measurements above a northern hardwood forest. J. Geophys. Res.-Atmos. 110, Art. No. D07301.
    • Reich, P. B., Schoettle, A. W., Stroo, H. F., Troiano, J. and Amundson, R. G. 1987. Effects of ozone and acid-rain on white-pine (Pinus-Strobus) seedlings grown in 5 soils .1. Net photosynthesis and growth. Can. J. Bot.-Revue Canadienne De Botanique 65, 977-987.
    • Ridley, B. A., Grahek, F. E. and Walega, J. G. 1992. A small, highsensitivity, medium-response ozone detector suitable for measurements from light aircraft. J. Atmos. Ocean. Technol. 9, 142-148.
    • Rondo´n, A. 1993. Atmosphere-surface exchange of nitrogen oxides and ozone, Dissertation thesis, University of Stockholm, Stockholm, 115 pp.
    • Rondo´n, A., Johansson, C. and Granat, L. 1993. Dry deposition of nitrogen-dioxide and ozone to Coniferous forests. J. Geophys. Res.- Atmos. 98, 5159-5172.
    • Schmid, H. P., Su, H. B., Vogel, C. S. and Curtis, P. S. 2003. Ecosystematmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res.-Atmos. 108, Art. No. 4417.
    • Sharkey, T. D., Loreto, F. and Delwiche, C. F. 1991. High-carbon dioxide and sun shade effects on isoprene emission from Oak and Aspen tree leaves. Plant Cell Environ. 14, 333-338.
    • Ska¨rby, L., Ro-Poulsen, H., Wellburn, F. A. M. and Sheppard, L. J. 1998. Impacts of ozone on forests: a European perspective. New Phytologist 139, 109-122.
    • Statistics Canada 2002. 2001 Community Profiles. Statistics Canada Catalogue no. 93F0053XIE., Statistics Canada, Ottawa, Ontario.
    • Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 670 pp.
    • Thornberry, T., Carroll, M. A., Keeler, G. J., Sillman, S., Bertman, S. B., and co-authors. 2001. Observations of reactive oxidized nitrogen and speciation of NOy during the PROPHET summer 1998 intensive. J. Geophys. Res.-Atmos. 106, 24359-24386.
    • U. S. Census Bureau 2001. Census 2000 redistricting data (Public Law 94-171). Summary file 2000 Census of population and housing, U.S. Dept. of Commerce, Economics and Statistics Administration, U.S. Census Bureau, Washington, D.C.
    • Uddling, J., Gunthardt-Goerg, M. S., Matyssek, R., Oksanen, E., Pleijel, H., and co-authors. 2004. Biomass reduction of juvenile birch is more strongly related to stomatal uptake of ozone than to indices based on external exposure. Atmos. Environ. 38, 4709-4719.
    • USDA Forest Service 2001, Forest Inventory Analysis (FIA), USDA Forest Service, Washington, DC, USA.
    • Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschleger, S. D. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. Forest Meteorol. 106, 153-168.
    • Zeller, K. F. and Nikolov, N. T. 2000. Quantifying simultaneous fluxes of ozone, carbon dioxide and water vapour above a subalpine forest ecosystem. Environ. Pollut. 107, 1-20.
    • Zhang, L. M., Brook, J. R. and Vet, R. 2002a. On ozone dry deposition - with emphasis on non-stomatal uptake and wet canopies. Atmos. Environ. 36, 4787-4799.
    • Zhang, L. M., Moran, M. D., Makar, P. A., Brook, J. R. and Gong, S. L. 2002b. Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system. Atmos. Environ. 36, 537-560.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from