Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Delon, Claire; Serça, Dominique; Boissard, Christophe; Dupont, Richard; Dutot, Alain; Laville, Patricia; De Rosnay, Patricia; Delmas, Robert (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Soils are considered as an important source for NO emissions, but the uncertainty in quantifying these emissions worldwide remains large due to the lack of field experiments and high variability in time and space of environmental parameters influencing NO emissions. In this study, the development of a relationship for NO flux emission from soil with pertinent environmental parameters is proposed. An Artificial Neural Network (ANN) is used to find the best non-linear regression between NO fluxes and seven environmental variables, introduced step by step: soil surface temperature, surface water filled pore space, soil temperature at depth (20–30 cm), fertilisation rate, sand percentage in the soil, pH and wind speed. The network performance is evaluated each time a new variable is introduced in the network, i.e. each variable is justified and evaluated in improving the network performance. A resulting equation linking NO flux from soil and the seven variables is proposed, and shows to perform well with measurements (R2= 0.71), whereas other regression models give a poor correlation coefficient between calculation and measurements (R2≤ 0.12 for known algorithms used at regional or global scales). ANN algorithm is shown to be a good alternative between biogeochemical and large-scale models, for future application at regional scale.DOI: 10.1111/j.1600-0889.2007.00254.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, I. C., Levine, J. S., Poth, M. A. and Riggan, P. J. 1988. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning. J. Geophys. Res. 93(D4), 3893- 3898.
    • Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A. and co-authors. 2004. Water pulses and biogeochemical cycles in arid and semi arid ecosystems. Oecologia 141, 221-235.
    • Bertram, T. H., Heckel, A., Richter, A., Burrows, J. P. and Cohen, R. C. 2005. Satellite measurements of daily variations in soil NOx emissions. Geophys. Res. Lett. 32, doi:10.1029/2005GLO24640.
    • Bouwman, A. F., Boumans, L. J. M. and Batjes, N. H. 2002a. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochem. Cycles 16, 1058, doi:10.1029/2001GB001811.
    • Bouwman, A. F., Boumans, L. J. M. and Batjes, N. H. 2002b. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem. Cycles 16, 1080, doi:10.1029/2001GB001812.
    • Breuer, L., Papen, H. and Butterbach-Bahl, K. 2000. N2O emission from tropical forest soils of Australia. J. Geophys. Res. 105(D21), 26 353- 26 367.
    • Butterbach-Bahl, K., Stange, F., Papen, H. and Li, C. 2001. Regional inventory of nitric oxide and nitrous axide emissions for forest soils of southeast Germany using the biogeochemical model PnET-N-DNDC. J. Geophys. Res. 106, 34 155-34 166.
    • Butterbach-Bahl, K., Kock, M., Willibald, G., Hewett, B., Buhagiar, S., Papen and co-authors. 2004. Temporal variations of fluxes of NO, NO2, N2O, CO2 and CH4 in a tropical rain forest ecosystem. Global Biogeochem. Cycles 18, GB3012, doi:10.1029/2004GB002243.
    • Cardenas, L., Rondon, A., Johansson, C. and Sanhueza, E. 1993. Effects of soil moisture, temperature and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. J. Geophys. Res. 98, 14 783-14 790.
    • Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CH4, OCS, N2O and NO). Microbiol..Rev. 60, 609-640.
    • Davidson, E. A. 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (eds. J. E. Rogers and W. B. Whitman) American Society for Microbiology, Washington, 219-235.
    • Davidson, E. A. and Kingerlee, W. 1997. A global inventory of nitric oxide emissions from soils. Nutr. Cycl. Agroecosyst. 48, 37-50.
    • Delmas, R., Serc¸a, D. and Jambert, C. 1997. Global inventory of NOx sources. Nutr. Cycl. Agroecosyst. 48, 51-60.
    • Diallo, A. and Gjessing, J. 1999. Natural resources management: Morpho-pedology in Gourma region. SSE Research program MaliNorway (in French), CNRST-IER-Oslo University (Norway).
    • Dutot, A., Rude, J. and Aumont, B. 2003. Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds. Atmos. Environ. 37, 269-276.
    • Dreyfus, G., Martinez, J. M., Samuelides, M., Gordon, M. B., Badran, F., Thiria, S. and co-authors. 2002. In: Neural Networks. Methodology and applications (In French). Eyrolles, Paris.
    • Ganzeveld, L. N., Lelieveld, J., Dentener, F. J., Krol, M. C., Bouwman, A. J. and co-authors. 2002. Global soil-biogenic emissions and the role of canopy processes. J. Geophys. Res. 107(D16), 10.1029/2001IJD001289.
    • Gardner, M. W. and Dorling, S. R. 1998. Artificial neural networks (The multilayer Perceptron)- A review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627-2636.
    • Gardner, M. W. and Dorling, S. R. 1999. Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33, 709-719.
    • Horii, C. V., Munger, J. W., Wofsy, S. C., Zahniser, M., Nelson, D. and coauthors. 2004. Fluxes of nitrogen oxides over a temperate deciduous forest. J. Geophys. Res. 109, D08305, doi:10.1029/2003JD004326.
    • Hsieh, W. W. and Tang, B. 1998. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. of the American Meteorological Society 79, 1855-1869.
    • Jaegle´, L., Martin, R. V., Chance, K., Steinberger, L., Kurosu, T. P. and coauthors. 2004. Satellite mapping of rain-induced nitric oxide emissions from soils. J. Geophys. Res. 109, doi:10.1029/2003JD004406.
    • Johansson, C., Rodhe, H. and Sanhueza, E. 1988. Emission of NO in a tropical savanna and a cloud forest during the dry season. J. Geophys. Res. 93, 7180-7192.
    • Kesik, M., Ambus, P., Baritz, R., Bru¨ggemann, N., Butterbach-Bahl, K. and co-authors. 2005. Inventories of N2O and NO emissions from European forest soils Biogeosciences 2, 353-375.
    • Kiese, R., Li, C., Hilbert, D. W., Papen, H. and Butterbach-Bahl, K. 2005. Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in Wet Tropics of Australia. Global Change Biol. 11(1), 128-144.
    • Kullback, S. and Leibler, R. 1951. On information and sufficiency. Ann. Math. Stat. 22, 79-86.
    • Kullback, S. 1959. Statistics and Information Theory. Dover Publications, New York.
    • Laville, P., He´nault, C., Gabrielle, B. and Serc¸a, D. 2005. Measurement and modelling of NO fluxes over maize and wheat crops during their growing seasons: effect of crop management. Nutr. Cycl. Agroecosyst. 72, 159-171.
    • Le Roux, X., Abbadie, L., Lensi, R. and Serc¸a, D. 1995. Emission of nitrogen monoxide from African tropical ecosystems: control of emission by soil characteristics in humid and dry savannas of West Africa. J. Geophys. Res. 9100, 23133-23142.
    • Li, C., Aber, J., Stange, F., Butterbach-Bahl, K. and Papen, H. 2000. A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J. Geophys. Res. 105, 4369-4384.
    • Ludwig, J., Meixner, F. X., Vogel, B. and Fo¨rstner, J. 2001. Soil-air exchange fo nitric oxide: An overview of processes, environmental factors, and modelling studies. Biogeochemistry 52, 225-257.
    • Martin, R. E., Scholes, M. C., Mosier, A. R., Ojima, D. S., Holland, E. A. and co-authors. 1998. Controls on annual emissions of nitric oxide from soils of the Colorado shortgrass steppe. Global Biogeochem. Cycles 12, 81-91.
    • Meixner, F. X. and Yang, W. X. 2004. Biogenic emissions of nitric oxide and nitrous oxide from arid and semi-arid land. Dryland Ecohydrology (eds. P. D'Odorico and A. Porporato). Kluwer Academic Publishers B.V., Dordrecht, The Netherlands, pp. 23-46.
    • Mu¨ller, J. 1992. Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J. Geophys. Res. 97, 3787-3804.
    • Navone, H. D. and Ceccatto, H. A. 1994. Predicting Indian monsoon rainfall: a neural network approach. Clim. Dyn. 10, 305-312.
    • Ormeci, B., Sanin, S. L. and Pierce, J. J. 1999. Laboratory study of NO flux from agricultural soil: effects of soil moisture, pH and temperature. J. Geophys. Res. 104, 1621-1629.
    • Otter, L. B., Yang, W. X., Scholes, M. C. and Meixner, F. X. 1999. Nitric oxide emissions from a Southern African Savanna. J. Geophys. Res. 104, 18 471-18 485.
    • Parsons, D. A. B., Scholes, M. C., Scholes, R. J. and Levine, J. S. 1996. Biogenic NO emissions from savanna soils as a function of fire regime, soil type, soil nitrogen and water status. J. Geophys. Res. 101, 23 683- 23 688.
    • Parton, W. J., Holland, E. E., Del Grosso, J., Hartman, M. D., Martin, R. E. and co-authors. 2001. Generalized model for NOx and N2O emissions from soils. J. Geophys. Res. 106, 17 403-17 419.
    • Potter, C. S., Matson, P. A., Vitousek, P. M. and Davidson, E. A. 1996. Process modelling of controls on nitrogen trace gas emissions from soils worldwide. J. Geophys. Res. 101, 1361-1377.
    • Reiners, W. A., Liu, S., Gerow, K. G., Keller, M. and Schimel, D. S. 2002. Historical and future land use effects on N2O and NO emissions using an ensemble modelling approach: Costa Rica's Carribean lowlands as an example. Global Biogeochem. Cycles 16, 1068, doi:10.1029/2001GB001437.
    • Roelle, P. A., Aneja, V. P., Gay, B., Geron, C. and Pierce, T. 2001. Biogenic nitric oxide emissions from cropland soils. Atmos. Environ. 35, 115-124.
    • Roelle, P. A., Aneja, V. P., Mathur, R., Vukovich, J. and Peirce, J. 2002. Modeling nitric oxide emissions from biosolid amended soils. Atmos. Environ. 36, 5687-5696.
    • Sanhueza, E., Hao, W. M., Scharffe, D., Donoso, L. and Crutzen, P. J. 1990. N2O and NO emissions from soils of the Northern part of the Guyana Shield, Venezuela. J. Geophys. Res. 95, 22 481-22 488.
    • Schindlbacher, A., Zeichmeister-Boltenstern, S. and Butterbach-Bahl, K. 2004. Effects of soil moisture and temperature on NO, NO2 and N2O emissions from European forest soils. J. Geophys. Res. 109, D17302, doi:10.1029/2004JD004590.
    • Schlecht, E., Fernandez-Rivera, S. and Hiernaux, P. 1997. Timing, size and nitrogen concentration of faecal and urinary excretions in cattle, sheep and goats: Can they be exploited for better manuring of cropland? In: Soil Fertility Management in West African Land Use Ssytems (eds. G. Renard, A. Neef, K. Becker and M. von Oppen), Margarf Verlag, Niamey, Niger, Weikersheim, Germany.
    • Schlecht, E. and Hiernaux, P. 2004. Beyond adding up inputs and outputs: process assessment and upscaling in modelling nutrient flows. Nutr. Cycl. Agroecosyst. 70, 303-319.
    • Serc¸a, D., Delmas, R., Jambert, C. and Labroue, L. 1994. Emissions of nitrogen oxides from equatorial rain forest in central Africa: origin and regulation of NO emissions from soils. Tellus 46B, 243- 254.
    • Serc¸a, D., Delmas, R., Le Roux, X., Parsons, D. A. B., Scholes, M. C., Abbadie, L. and co-authors. 1998. Comparison of nitrogen monoxide emissions from several African tropical ecosystems and influence of season and fire. Global Biogeochem. Cycles 12, 637-651.
    • Shepherd, M. F., Barzetti, S. and Hastie, D. R. 1991. The production of atmospheric NOx and N2O from a fertilized agricultural soil. Atmos. Environ. 25A, 1961-1969.
    • Skiba, U., Hargreaves, K. J., Fowler, D. and Smith, K. A. 1992. Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmos. Environ. 26A, 2477-2488.
    • Van Dijk, S. and Meixner, F. 2001. Production and consumption of NO in forest and pasture soils from the Amazon basin. Water, Air, and Soil Pollution 1, 119-130.
    • Vapnik, V. N. 1995. The nature of statistical learning theory. Springer.
    • Williams, E. J., Guenther, A. and Fehsenfeld, F. C. 1992. An inventory of nitric oxide emissions from soils in the United States. J. Geophys. Res. 97, 7511-7519.
    • Yang, W. X. and Meixner, F. X. 1997. Laboratory studies on the release of nitric oxide from sub-tropical grassland soils: The effect of soil temperature and moisture. In: Gaseous Nitrogen Emissions from Grasslands (eds. S. C. Jarvis and B. F. Pain), CAB International, Wallingford, New York, pp. 67-70.
    • Yan, X., Ohara, T. and Akimoto, H. 2005. Statistical modelling of global soil NOx emissions. Global Biogeochem. Cycles 19, GB3019, doi:10.1029/2004GB002276.
    • Yi, J. and Prybutok, V. R. 1996. A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Poll. 92, 349-357.
    • Yienger, J. J. and Levy, H. II, 1995. Empirical model of global soilbiogenic NOx emissions. J. Geophys. Res. 100, 11447-11464.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from