LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christophersen, Olav Albert; Haug, Anna (2011)
Publisher: Microbial Ecology in Health and Disease
Journal: Microbial Ecology in Health and Disease
Languages: English
Types: Article
Subjects:
The World Health Organization (WHO) no longer regards the Spanish flu pandemic as a worst case scenario as the basis for contingency planning, as to how to meet a possible pandemic with hypervirulent H5N1 influenza. The worldwide fatality rate among confirmed cases has increased from 43% in 2005 to 69% in 2006, while in Indonesia it was 82% in 2006. What the world now needs to be prepared for is a pandemic with something that is equally as transmissible as ordinary influenza virus, but which may have a case fatality rate of 80% or more, if not treated with therapeutic methods much better than those available today (i.e. treatment methods that have not been sufficient to hinder the average case fatality rate from climbing to as much as 82% in Indonesia in 2006). Not only are current treatment methods not efficacious enough, but the situation is also very far from satisfactory as regards vaccine development and production which means that the world must still be considered to be almost totally unprepared, if a pandemic with hypervirulent H5N1 influenza should start tomorrow. A very detailed description of new experimental work is given to make it possible to understand better some of the main elements of the attack strategy used by the enemy so that this ‘military intelligence’ information can be used as the basis for a hopefully more rational strategy of defense. The enemy neutralizes a system used for very early detection of invasion with RNA viruses, leading to total or partial immobilization of associated early response defensive weapon systems. The proposed defense strategy comprises two elements: 1) keeping the patient alive until rescue forces (i.e. a good adaptive immune response) can arrive, and 2) making it possible for the rescue forces to arrive as soon as possible. Some tactical principles and weapons that may be used for defense purposes are also proposed, partially on the basis of animal experiments with both lethal influenza and other highly lethal viruses. A main challenge is to reduce pulmonary inflammation causing alveolar edema without simultaneously hindering the development of a good adaptive immune response. Several practical suggestions are given as to how this possibly might be done. However, it is imperative that the suggested new defense strategy (or therapeutic strategy) should be tested as soon as possible both in experimentally infected animals and in spontaneously occurring human cases of hypervirulent H5N1 influenza.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Christophersen OA, Haug A. Why is the world so poorly prepared for a pandemic of hypervirulent avian influenza? Microb Ecol Health Dis. 2006;/18:/113 23.
    • 2. World Health Organization. Influenza research at the human and animal interface. Report of a WHO working group. Geneva, Switzerland, 21 22 September 2006. WHO/EPR/ GIP/2006.3. Available online on WHO home site.
    • 3. Benedictow OJ. The Black Death 1346 1353. The complete history. Woodbridge, UK: Boydell Press; 2004.
    • 4. Johnson NP, Mueller J. Updating the accounts: global mortality of the 1918 1920 ''Spanish'' influenza pandemic. Bull Hist Med. 2002;/76:/105 15.
    • 5. Murray CJ, Lopez AD, Chin B, Feehan D, Hill KH. Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918 20 pandemic: a quantitative analysis. Lancet. 2006;/368:/2211 8.
    • 6. Christophersen OA, Haug A. Possible roles of oxidative stress, local circulatory failure and nutrition factors in the pathogenesis of hypervirulent influenza: implications for therapy and global emergency preparedness. Microb Ecol Health Dis. 2005;/17:/189 99.
    • 7. Moxnes JE, Christophersen OA. Counter-attacking pandemic H5N1 bird influenza by counter-pandemic. Microb Ecol Health Dis. 2006;/18:/4 25.
    • 8. Mamelund S-E. Spanish influenza and beyond: the case of Norway. Dr polit. thesis, University of Oslo, 2004.
    • 9. Chowell G, Ammon CE, Hengartner NW, Hyman JM. Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. Vaccine. 2006;/24:/6747 50.
    • 10. Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J Theor Biol. 2006;/241:/193 204.
    • 11. Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface. 2007;/4:/155 66.
    • 12. Karaivanova VK, Spiro RG. Sulphation of N-linked oligosaccharides of vesicular stomatitis and influenza virus envelope glycoproteins: host cell specificity, subcellular localization and identification of substituted saccharides. Biochem J. 1998;/329:/511 8.
    • 13. Spiro MJ, Spiro RG. Sulfation of the N-linked oligosaccharides of influenza virus hemagglutinin: temporal relationships and localization of sulfotransferases. Glycobiology. 2000;/10:/ 1235 42.
    • 14. Wallensten A. Influenza A virus in wild bird. Link o¨ping University Medical Dissertations No. 955. Linko¨ ping and Kalmar, 2006.
    • 15. Hosoya M, Balzarini J, Shigeta S, De Clercq E. Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother. 1991;/35:/2515 20.
    • 16. Zhang M, Cheung PC, Ooi VE, Zhang L. Evaluation of sulfated fungal beta-glucans from the sclerotium of Pleurotus tuber-regium as a potential water-soluble anti-viral agent. Carbohydr Res. 2004;/339:/2297 301.
    • 17. Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet. 2005;/366:/ 1165 74.
    • 18. Jefferson T, Demicheli V, Rivetti D, Jones M, Di Pietrantonj C, Rivetti A. Antivirals for influenza in healthy adults: systematic review. Lancet 2006;367:303 13. [Erratum in: Lancet 2006;367:2060.]
    • 19. McKeon T. The modern rise of population. London: Arnold; 1976.
    • 20. Scrimshaw NS, Taylor CE, Gordon JE. Interactions of nutrition and infection. Monogr Ser World Health Organ. Geneva: WHO, 1968.
    • 21. Koivistoinen P, ed. Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo,Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb and ash. Acta Agriculturae Scandinavica. Supplementum 22. Stockholm, 1980.
    • 22. Goldschmidt VM. Geochemistry. Oxford: Clarendon Press; 1954.
    • 23. Krauskopf KB. Introduction to geochemistry, 2nd edn. Singapore: McGraw-Hill Book Company; 1982.
    • 24. Bolt GM, Bruggenwert MGM, eds. Soil chemistry. A. Basic elements. Developments in soil science 5A. Amsterdam: Elsevier Scientific, 1978.
    • 25. Parfitt RL. Anion adsorption by soils and soil materials. Advances in Agronomy. 1978;/30:/1 50.
    • 26. Schachtschabel P, Blume H-P, Bru¨ mmer G, Hartge K-H, Schwertmann U. ''Scheffer-Schachtschabel'': Lehrbuch der Bodenkunde, 15th edn. Heidelberg: Spektrum Akademischer Verlag; 2002.
    • 27. La˚g J, Steinnes E. Soil selenium in relation to precipitation. Ambio. 1974;/3:/237 8.
    • 28. La˚g J, Steinnes E. Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma. 1978;/20:/3 14.
    • 29. Allen RO, Steinnes E. Contribution from long-range atmospheric transport to the heavy metal pollution of surface soil. In: Drabløs D, Tolland A. editors. Ecological impact of acid precipitation. Oslo: A˚ s; 1980. p. 102 3.
    • 30. Xu G-I, Jiang Y-F. Selenium and the prevalence of Keshan and Kaschin-Beck diseases in China. In: Thornton I, ed. Proceedings of the 1st International Symposium on Geochemistry and Health. (Held at the Royal Society, London 16 17 April 1985.) Northwood. UK: Science Reviews. 1985:/192 204.
    • 31. Schlesinger WH. Biogeochemistry. An analysis of global change. New York: Academic Press; 1997.
    • 32. Yan R, Gauthier D, Flamant G, Peraudeau G, Lu J, Zheng C. Fate of selenium in coal combustion: volatilization and speciation in the flue gas. Environmental Science & Technology. 2001;/35:/1406 10.
    • 33. Walshe FMR. The integration of medicine. In: Walshe FMR, editor. Critical studies in neurology. Edinburgh: E & S Livingstone; 1948.
    • 34. Glezen WP. Emerging infections: pandemic influenza. Epidemiol Rev. 1996;/18:/64 76.
    • 35. Kobasa D, Jones SM, Shinya K, Kash JC, Copps J, Ebihara H, et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 2007;/ 445:/319 23.
    • 36. Xu T, Qiao J, Zhao L, Wang G, He G, Li K, et al. Acute respiratory distress syndrome induced by avian influenza A (H5N1) virus in mice. Am J Respir Crit Care Med. 2006;/ 174:/1011 7.
    • 37. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest. 1998;/ 101:/643 9.
    • 38. Skoner DP, Gentile DA, Patel A, Doyle WJ. Evidence for cytokine mediation of disease expression in adults experimentally infected with influenza A virus. J Infect Dis. 1999;/ 180:/10 4.
    • 39. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;/ 441:/101 5.
    • 40. Matikainen S, Siren J, Tissari J, Veckman V, Pirhonen J, Severa M, et al. Tumor necrosis factor alpha enhances influenza A virus-induced expression of antiviral cytokines by activating RIG-I gene expression. J Virol. 2006;/80:/3515 22.
    • 41. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5?-Triphosphate RNA is the ligand for RIG-I. Science. 2006;/314:/994 7.
    • 42. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to singlestranded RNA bearing 5?-phosphates. Science. 2006;/314:/ 997 1001.
    • 43. Garia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. 1998;/ 252:/324 30.
    • 44. Krug RM, Yuan W, Noah DL, Latham AG. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology. 2003;/309:/181 9.
    • 45. Li S, Min JY, Krug RM, Sen GC. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology. 2006;/349:/13 21.
    • 46. Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M Jr, Garcia-Sastre A. Inhibition of retinoic acidinducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol. 2007;/81:/514 24.
    • 47. Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, et al. NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol. 2007;/36:/263 9.
    • 48. Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol. 2007;/9:/930 8.
    • 49. Oxford JS, Sefton A, Jackson R, Innes W, Daniels RS, Johnson NP. World War I may have allowed the emergence of ''Spanish'' influenza. Lancet Infect Dis. 2002;/2:/111 4.
    • 50. Li PC, Huang HT, Liang JT. Neurophysiological effects of recurrent laryngeal and thoracic vagus nerves on mediating the neurogenic inflammation of the trachea, bronchi, and esophagus of rats. Auton Neurosci. 2001;/88:/142 50.
    • 51. Groneberg DA, Quarcoo D, Frossard N, Fischer A. Neurogenic mechanisms in bronchial inflammatory diseases. Allergy. 2004;/59:/1139 52.
    • 52. Bhatia M, Zhi L, Zhang H, Ng SW, Moore PK. Role of substance P in hydrogen sulfide-induced pulmonary inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2006;/ 291:/L896 904.
    • 53. Puneet P, Hegde A, Ng SW, Lau HY, Lu J, Moochhala SM, et al. Preprotachykinin-A gene products are key mediators of lung injury in polymicrobial sepsis. J Immunol. 2006;/176:/ 3813 20.
    • 54. Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-alpha induces ectopic activity in nociceptive primary afferent fibres. Neuroscience. 1997;/81:/255 62.
    • 55. Zhang JM, Li H, Liu B, Brull SJ. Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol. 2002;/ 88:/1387 92.
    • 56. Liu YL, Zhou LJ, Hu NW, Xu JT, Wu CY, Zhang T, et al. Tumor necrosis factor-alpha induces long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn in rats with nerve injury: the role of NF-kappa B, JNK and p38 MAPK. Neuropharmacology. 2007;/52:/708 15.
    • 57. Brenn D, Richter F, Schaible HG. Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum. 2007;/56:/351 9.
    • 58. Coleridge JC, Coleridge HM, Schelegle ES, Green JF. Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs. J Appl Physiol. 1993;/74:/2345 52.
    • 59. Ruan T, Ho CY, Kou YR. Afferent vagal pathways mediating respiratory reflexes evoked by ROS in the lungs of anesthetized rats. J Appl Physiol. 2003;/94:/1987 98.
    • 60. Ruan T, Lin YS, Lin KS, Kou YR. Sensory transduction of pulmonary reactive oxygen species by capsaicin-sensitive vagal lung afferent fibres in rats. J Physiol. 2005;/565:/563 78.
    • 61. Ruan T, Lin YS, Lin KS, Kou YR. Mediator mechanisms involved in TRPV1 and P2X receptor-mediated, ROSevoked bradypneic reflex in anesthetized rats. J Appl Physiol. 2006;/101:/644 54.
    • 62. Tsai TL, Chang SY, Ho CY, Kou YR. Neural and hydroxyl radical mechanisms underlying laryngeal airway hyperreactivity induced by laryngeal acid-pepsin insult in anesthetized rats. J Appl Physiol. 2006;/101:/328 38.
    • 63. Longhurst JC, Dittman LE. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Am J Physiol. 1987;/253:/H556 67.
    • 64. Martin HA, Basbaum AI, Kwiat GC, Goetzl EJ, Levine JD. Leukotriene and prostaglandin sensitization of cutaneous high-threshold C- and A-delta mechanonociceptors in the hairy skin of rat hindlimbs. Neuroscience. 1987;/22:/651 9.
    • 65. Martin HA, Basbaum AI, Goetzl EJ, Levine JD. Leukotriene B4 decreases the mechanical and thermal thresholds of C-fiber nociceptors in the hairy skin of the rat. J Neurophysiol. 1988;/60:/438 45.
    • 66. Devor M, White DM, Goetzl EJ, Levine JD. Eicosanoids, but not tachykinins, excite C-fiber endings in rat sciatic nerve-end neuromas. Neuroreport. 1992;/3:/21 4.
    • 67. Karla W, Shams H, Orr JA, Scheid P. Effects of the thromboxane A2 mimetic, U46,619, on pulmonary vagal afferents in the cat. Respir Physiol. 1992;/87:/383 96.
    • 68. Bergren DR. Prostaglandin involvement in lung C-fiber activation by substance P in guinea pigs. J Appl Physiol. 2006;/100:/1918 27.
    • 69. McDonald DM. Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am J Physiol. 1994;/266:/L61 83.
    • 70. Hirata A, Baluk P, Fujiwara T, McDonald DM. Location of focal silver staining at endothelial gaps in inflamed venules examined by scanning electron microscopy. Am J Physiol. 1995;/269:/L403 18.
    • 71. Thurston G, Baluk P, Hirata A, McDonald DM. Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol. 1996;/271:/ H2547 62.
    • 72. Widdicombe J. The tracheobronchial vasculature: a possible role in asthma. Microcirculation. 1996;/3:/129 41.
    • 73. Baluk P, Hirata A, Thurston G, Fujiwara T, Neal CR, Michel CC, et al. Endothelial gaps: time course of formation and closure in inflamed venules of rats. Am J Physiol. 1997;/ 272:/L155 70.
    • 74. Widdicombe J. Microvascular anatomy of the nose. Allergy 1997;52(40 Suppl):7 11.
    • 75. McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation. 1999;/6:/7 22.
    • 76. Levasseur JE, Patterson JL Jr, Garcia CI, Moskowitz MA, Choi SC, et al. Effect of neonatal capsaicin treatment on neurogenic pulmonary edema from fluid-percussion brain injury in the adult rat. J Neurosurg. 1993;/78:/610 8.
    • 77. Delaunois A, Gustin P, Ansay M. Modulation of the acetylcholine- and substance P-induced pulmonary edema by calcitonin gene-related peptide in the rabbit. J Pharmacol Exp Ther. 1994;/270:/30 6.
    • 78. Germonpre PR, Joos GF, Pauwels RA. Characterization of the neurogenic plasma extravasation in the airways. Arch Int Pharmacodyn Ther. 1995;/329:/185 203.
    • 79. Huang HT, Huang SH, Luor YG. Postvagotomy changes in neurogenic plasma extravasation in rat bronchi. J Auton Nerv Syst. 1995;/55:/9 17.
    • 80. Grant AD, Akhtar R, Gerard NP, Brain SD. Neurokinin B induces oedema formation in mouse lung via tachykinin receptor-independent mechanisms. J Physiol. 2002;/543:/ 1007 14.
    • 81. Goncalves LR, Mariano M. Local haemorrhage induced by Bothrops jararaca venom: relationship to neurogenic inflammation. Mediators Inflamm. 2000;/9:/101 7.
    • 82. Wassmann S, Stumpf M, Strehlow K, Schmid A, Schieffer B, Bohm M, et al. Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circ Res. 2004;/94:/534 41.
    • 83. Shaw S, Jayatilleke E, Herbert V, Colman N. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/ xanthine oxidase-generated superoxide. Biochem J. 1989;/ 257:/277 80.
    • 84. Diplock AT. Vitamin E, selenium, and the membraneassociated drug-metabolizing enzyme system of rat liver. Vitam Horm. 1974;/32:/445 61.
    • 85. Davies KJ. Degradation of oxidized proteins by the 20S proteasome. Biochimie. 2001;/83:/301 10.
    • 86. Divald S, Powell SR. Proteasome mediates removal of proteins oxidized during myocardial ischemia. Free Radic Biol Med. 2006;/40:/156 64.
    • 87. Tsukamoto S, Yokosawa H. Natural products inhibiting the ubiquitin-proteasome proteolytic pathway, a target for drug development. Curr Med Chem. 2006;/13:/745 54.
    • 88. Dubois B, Lamy PJ, Chemin K, Lachaux A, Kaiserlian D. Measles virus exploits dendritic cells to suppress CD4 T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol. 2001;/214:/173 83.
    • 89. Schneider-Schaulies S, Niewiesk S, Schneider-Schaulies J, ter Meulen V. Measles virus induced immunosuppression: targets and effector mechanisms. Curr Mol Med. 2001;/1:/ 163 81.
    • 90. Hoffman SJ, Polack FP, Hauer DA, Griffin DE. Measles virus infection of rhesus macaques affects neutrophil expression of IL-12 and IL-10. Viral Immunol. 2003;/16:/369 79.
    • 91. Slifka MK, Homann D, Tishon A, Pagarigan R, Oldstone MB. Measles virus infection results in suppression of both innate and adaptive immune responses to secondary bacterial infection. J Clin Invest. 2003;/111:/805 10.
    • 92. Gredmark S, So¨ derberg-Naucler C. Human cytomegalovirus inhibits differentiation of monocytes into dendritic cells with the consequence of depressed immunological functions. J Virol. 2003;/77:/10943 56.
    • 93. Gredmark S, Tilburgs T, So¨ derberg-Naucler C. Human cytomegalovirus inhibits cytokine-induced macrophage differentiation. J Virol. 2004;/78:/10378 89.
    • 94. Marie JC, Saltel E, Escola JM, Jurdic P, Wild TF, Horvat B. Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol. 2004;/ 78:/11952 61.
    • 95. Hahm B, Trifilo MJ, Zuniga EI, Oldstone MB. Viruses evade the immune system through type I interferonmediated STAT2-dependent, but STAT1-independent, signaling. Immunity. 2005;/22:/247 57.
    • 96. Hahm B, Cho JH, Oldstone MB. Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology. 2007;/358:/251 7.
    • 97. Hewlett EL, McKelway RB, Sapiain LA, Hernandez LA, Myers GA. Depression of delayed hypersensitivity responses in patients with pertussis. Dev Biol Stand. 1985;/61:/241 7.
    • 98. Toossi Z, Young TG, Averill LE, Hamilton BD, Shiratsuchi H, Ellner JJ. Induction of transforming growth factor beta 1 by purified protein derivative of Mycobacterium tuberculosis. Infect Immun. 1995;/63:/224 8.
    • 99. Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. Selective induction of transforming growth factor beta in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect Immun. 1996;/64:/399 405.
    • 100. Geijtenbeek TB, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CM, Appelmelk B, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;/197:/7 17.
    • 101. Gagliardi MC, Teloni R, Giannoni F, Pardini M, Sargentini V, Brunori L, et al. Mycobacterium bovis Bacillus CalmetteGuerin infects DC-SIGN- dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J Leukoc Biol. 2005;/78:/106 13.
    • 102. Pinheiro RO, Pinto EF, Benedito AB, Lopes UG, RossiBergmann B. The T-cell anergy induced by Leishmania amazonensis antigens is related with defective antigen presentation and apoptosis. An Acad Bras Cienc. 2004;/76:/ 519 27.
    • 103. Robinson TM, Nelson R, Artis D, Scott P, Boyer JD. Experimental Leishmania major infection suppresses HIV1 DNA vaccine induced cellular immune response. Cells Tissues Organs. 2004;/177:/185 8.
    • 104. Soares NM, Ferraz TP, Nascimento EG, Carvalho EM, Pontes-de-Carvalho L. The major circulating immunosuppressive activity in American visceral leishmaniasis patients is associated with a high-molecular weight fraction and is not mediated by IgG, IgG immune complexes or lipoproteins. Microb Pathog. 2006;/40:/254 60.
    • 105. Reddi AS, Bollineni JS. Selenium-deficient diet induces renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Kidney Int. 2001;/59:/1342 53.
    • 106. Leonarduzzi G, Scavazza A, Biasi F, Chiarpotto E, Camandola S, Vogel S, et al. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor beta1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis. FASEB J. 1997;/ 11:/851 7.
    • 107. Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, et al. Mechanism of suppression of cell-mediated immunity by measles virus. Science 1996;273:228 31. [Erratum in: Science 1997;275:1053.]
    • 108. Murata Y, Shimamura T, Tagami T, Tagatsuki F, Hamuro J. The skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol. 2002;/2:/673 89.
    • 109. Dobashi K, Aihara M, Araki T, Shimizu Y, Utsugi M, Iizuka K, et al. Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clin Exp Immunol. 2001;/124:/290 6.
    • 110. Utsugi M, Dobashi K, Koga Y, Shimizu Y, Ishizuka T, Iizuja K, et al. Glutathione redox regulates lipopolysaccharideinduced IL-12 production through p38 mitogen-activated protein kinase activation in human monocytes: role of glutathione redox in IFN-gamma priming of IL-12 production. J Leukoc Biol. 2002;/71:/339 47.
    • 111. Roy M, Kiremidjan-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Effect of selenium on the expression of high affinity interleukin 2 receptors. Proc Soc Exp Biol Med. 1992;/200:/36 43.
    • 112. Roy M, Kiremidjan-Schumacher L, Wishe HI, Cohen MW, Stotzky G. Selenium supplementation enhances the expression of interleukin 2 receptor subunits and internalization of interleukin 2. Proc Soc Exp Biol Med. 1993;/202:/295 301.
    • 113. Kiremidjan-Schumacher L, Roy M, Wishe HI, Cohen MW, Stotzky G. Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells. Biol Trace Elem Res. 1996;/52:/227 39.
    • 114. Kiremidjan-Schumacher L, Roy M. Selenium and immune function. Z Ernahrungswiss. 1998;/37(Suppl 1):/50 6.
    • 115. Ranjan P, Anathy V, Burch PM, Weirather K, Lambeth JD, Heintz NH. Redox-dependent expression of cyclin D1 and cell proliferation by Nox1 in mouse lung epithelial cells. Antioxid Redox Signal. 2006;/8:/1447 59.
    • 116. Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, et al. Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci USA. 2006;/103:/13086 91.
    • 117. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;/25:/695 705.
    • 118. Brach MA, Gruss HJ, Kaisho T, Asano Y, Hirano T, Herrmann F. Ionizing radiation induces expression of interleukin 6 by human fibroblasts involving activation of nuclear factor-kappa B. J Biol Chem. 1993;/268:/8466 72.
    • 119. Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem. 2002;/277:/17125 38.
    • 120. Baccam M, Woo SY, Vinson C, Bishop GA. CD40- mediated transcriptional regulation of the IL-6 gene in B lymphocytes: involvement of NF-kappa B, AP-1, and C/ EBP. J Immunol. 2003;/170:/3099 108.
    • 121. Zerbini LF, Wang Y, Cho JY, Libermann TA. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res. 2003;/63:/2206 15.
    • 122. Scheller J, Ohnesorge N, Rose-John S. Interleukin-6 transsignalling in chronic inflammation and cancer. Scand J Immunol. 2006;/63:/321 9.
    • 123. Heinrich PC, Behrmann I, Mu¨ ller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J. 1998;/334:/297 314.
    • 124. Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS, Mikkelsen RB. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem. 2005;/280:/14453 61.
    • 125. Bogeski I, Bozem M, Sternfeld L, Hofer HW, Schulz I. Inhibition of protein tyrosine phosphatase 1B by reactive oxygen species leads to maintenance of Ca2 influx following store depletion in HEK 293 cells. Cell Calcium. 2006;/ 40:/1 10.
    • 126. Kanda M, Ihara Y, Murata H, Urata Y, Kono T, Yodoi J, et al. Glutaredoxin modulates platelet-derived growth factor-dependent cell signaling by regulating the redox status of low molecular weight protein-tyrosine phosphatase. J Biol Chem. 2006;/281:/28518 28.
    • 127. Delgado AV, McManus AT, Chambers JP. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 2003;/37:/355 61.
    • 128. Koon HW, Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci. 2006;/1088:/23 40.
    • 129. Sun J, Bhatia M. Effect of neuropeptides (SP and CGRP) on antigen presentation by macrophages. Immunopharmacol Immunotoxicol. 2005;/27:/395 404.
    • 130. Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, et al. Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet. 2004;/ 363:/587 93.
    • 131. Thorson A, Petzold M, Nguyen TK, Ekdahl K. Is exposure to sick or dead poultry associated with flulike illness?: a population-based study from a rural area in Vietnam with outbreaks of highly pathogenic avian influenza. Arch Intern Med. 2006;/166:/119 23.
    • 132. Levy SB. The antibiotic paradox. How miracle drugs are destroying the miracle. New York: Plenum Press; 1992.
    • 133. Maestroni GJ, Covacci V, Conti A. Hematopoietic rescue via T-cell-dependent, endogenous granulocyte-macrophage colony-stimulating factor induced by the pineal neurohormone melatonin in tumor-bearing mice. Cancer Res. 1994;/54:/ 2429 32.
    • 134. Maestroni GJ. kappa-Opioid receptors in marrow stroma mediate the hematopoietic effects of melatonin-induced opioid cytokines. Ann N Y Acad Sci. 1998;/840:/411 9.
    • 135. Maestroni GJ, Zammaretti F, Pedrinis E. Hematopoietic effect of melatonin involvement of type 1 kappa-opioid receptor on bone marrow macrophages and interleukin-1. J Pineal Res. 1999;/27:/145 53.
    • 136. Lissoni P, Tancini G, Barni S, Paolorossi F, Rossini F, Maffe P, et al. The pineal hormone melatonin in hematology and its potential efficacy in the treatment of thrombocytopenia. Recenti Prog Med. 1996;/87:/582 5.
    • 137. Lissoni P, Tancini G, Barni S, Paolorossi F, Ardizzoia A, Conti A, et al. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer. 1997;/5:/126 9.
    • 138. Lissoni P. Is there a role for melatonin in supportive care? Support Care Cancer. 2002;/10:/110 6.
    • 139. Mohan PF, Jacobson MS. Inhibition of macrophage superoxide generation by dehydroepiandrosterone. Am J Med Sci. 1993;/306:/10 5.
    • 140. Padgett DA, Loria RM. In vitro potentiation of lymphocyte activation by dehydroepiandrosterone, androstenediol, and androstenetriol. J Immunol. 1994;/153:/1544 52.
    • 141. Loria RM. Antiglucocorticoid function of androstenetriol. Psychoneuroendocrinology. 1997;/22(Suppl 1):/S103 S108.
    • 142. Hernandez-Pando R, De La Luz Streber M, Orozco H, Arriaga K, Pavon L, Al-Nakhli SA, et al. The effects of androstenediol and dehydroepiandrosterone on the course and cytokine profile of tuberculosis in BALB/c mice. Immunology. 1998;/95:/234 41.
    • 143. Loria RM, Padgett DA. Control of the immune response by DHEA and its metabolites. Rinsho Byori. 1998;/46:/505 17.
    • 144. Padgett DA, Loria RM. Endocrine regulation of murine macrophage function: effects of dehydroepiandrosterone, androstenediol, and androstenetriol. J Neuroimmunol. 1998;/84:/61 8.
    • 145. Loria RM, Conrad DH, Huff T, Carter H, Ben-Nathan D. Androstenetriol and androstenediol. Protection against lethal radiation and restoration of immunity after radiation injury. Ann N Y Acad Sci. 2000;/917:/860 7.
    • 146. Whitnall MH, Elliott TB, Harding RA, Inal CE, Landauer MR, Wilhelmsen CL, et al. Androstenediol stimulates myelopoiesis and enhances resistance to infection in gamma-irradiated mice. Int J Immunopharmacol. 2000;/22:/ 1 14.
    • 147. Loria RM. Immune up-regulation and tumor apoptosis by androstene steroids. Steroids. 2002;/67:/953 66.
    • 148. Lembeck F, Amann R. The influence of capsaicin sensitive neurons on stress-induced release of ACTH. Brain Res Bull. 1986;/16:/541 3.
    • 149. Amann R, Lembeck F. Stress induced ACTH release in capsaicin treated rats. Br J Pharmacol. 1987;/90:/727 31.
    • 150. Donnerer J, Amann R, Skofitsch G, Lembeck F. Substance P afferents regulate ACTH-corticosterone release. Ann N Y Acad Sci. 1991;/632:/296 303.
    • 151. Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res. 1999;/66:/35 41.
    • 152. Kurata K, Takebayashi M, Morinobu S, Yamawaki S. beta-Estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-methyl-D-aspartateinduced neurotoxicity in rat hippocampal neurons by different mechanisms. J Pharmacol Exp Ther. 2004;/311:/ 237 45.
    • 153. Gao J, Sun HY, Zhu ZR, Ding Z, Zhu L. Antioxidant effects of dehydroepiandrosterone are related to up-regulation of thioredoxin in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai). 2005;/37:/119 25.
    • 154. Tunez I, Munoz MC, Montilla P. Treatment with dehydroepiandrosterone prevents oxidative stress induced by 3-nitropropionic acid in synaptosomes. Pharmacology. 2005;/74:/113 8.
    • 155. Marcu AC, Kielar ND, Paccione KE, Barbee RW, Carter H, Ivatury RR, et al. Androstenetriol improves survival in a rodent model of traumatic shock. Resuscitation. 2006;/71:/ 379 86.
    • 156. Ben-Nathan D, Lachmi B, Lustig S, Feuerstein G. Protection by dehydroepiandrosterone in mice infected with viral encephalitis. Arch Virol. 1991;/120:/263 71.
    • 157. Ben-Nathan D, Lustig S, Kobiler D, Danenberg HD, Lupu E, Feuerstein G. Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. J Med Virol. 1992;/38:/159 66.
    • 158. Loria RM, Padgett DA. Androstenediol regulates systemic resistance against lethal infections in mice. Arch Virol. 1992;/ 127:/103 15.
    • 159. Carr DJ. Increased levels of IFN-gamma in the trigeminal ganglion correlate with protection against HSV-1-induced encephalitis following subcutaneous administration with androstenediol. J Neuroimmunol. 1998;/89:/160 7.
    • 160. Daigle J, Carr DJ. Androstenediol antagonizes herpes simplex virus type 1-induced encephalitis through the augmentation of type I IFN production. J Immunol. 1998;/ 160:/3060 6.
    • 161. Padgett DA, Loria RM, Sheridan JF. Endocrine regulation of the immune response to influenza virus infection with a metabolite of DHEA-androstenediol. J Neuroimmunol. 1997;/78:/203 11.
    • 162. Padgett DA, Sheridan JF. Androstenediol (AED) prevents neuroendocrine-mediated suppression of the immune response to an influenza viral infection. J Neuroimmunol. 1999;/98:/121 9.
    • 163. Padgett DA, Loria RM, Sheridan JF. Steroid hormone regulation of antiviral immunity. Ann N Y Acad Sci. 2000;/ 917:/935 43.
    • 164. Ben-Nathan D, Padgett DA, Loria RM. Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J Med Microbiol. 1999;/48:/425 31.
    • 165. Padgett DA, MacCallum RC, Loria RM, Sheridan JF. Androstenediol-induced restoration of responsiveness to influenza vaccination in mice. J Gerontol A Biol Sci Med Sci. 2000;/55:/B418 24.
    • 166. Danenberg HD, Alpert G, Lustig S, Ben-Nathan D. Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother. 1992;/36:/2275 9.
    • 167. Goya RG, Gagnerault MC, De Moraes MC, Savino W, Dardenne M. In vivo effects of growth hormone on thymus function in aging mice. Brain Behav Immun. 1992;/6:/341 54.
    • 168. Yamada M, Hato F, Kinoshita Y, Tominaga K, Tsuji Y. The indirect participation of growth hormone in the thymocyte proliferation system. Cell Mol Biol (Noisy-le-grand). 1994;/ 40:/111 21.
    • 169. De Mello-Coelho V, Savino W, Postel-Vinay MC, Dardenne M. Role of prolactin and growth hormone on thymus physiology. Dev Immunol. 1998;/6:/317 23.
    • 170. Vigano A, Saresella M, Trabattoni D, Giacomet V, di Natale B, Merlo M, et al. Growth hormone in T-lymphocyte thymic and postthymic development: a study in HIV-infected children. J Pediatr. 2004;/145:/542 8.
    • 171. Polgreen L, Steiner M, Dietz CA, Manivel JC, Petryk A. Thymic hyperplasia in a child treated with growth hormone. Growth Horm IGF Res. 2007;/17:/41 6.
    • 172. Dardenne M, Savino W, Gagnerault MC, Itoh T, Bach JF. Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells. Endocrinology. 1989;/125:/3 12.
    • 173. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med. 1999;/221:/281 93.
    • 174. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999;/19:/65 96.
    • 175. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002;/60:/258 74.
    • 176. Pacheco-Sanchez M, Boutin Y, Angers P, Gosselin A, Tweddell RJ. A bioactive (1 3)-, (1 4)-beta-D-glucan from Collybia dryophila and other mushrooms. Mycologia. 2006;/98:/180 5.
    • 177. Wu J, Zhang Y, Wang L, Xie B, Wang H, Deng S. Visualization of single and aggregated hulless oat (Avena nuda L.) (1 3),(1 4)-beta-D-glucan molecules by atomic force microscopy and confocal scanning laser microscopy. J Agric Food Chem. 2006;/54:/925 34.
    • 178. Sliva D. Cellular and physiological effects of Ganoderma lucidum (Reishi). Mini Rev Med Chem. 2004;/4:/873 9.
    • 179. Adachi Y, Ishii T, Ikeda Y, Hoshino A, Tamura H, Aketagawa J, et al. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun. 2004;/72:/ 4159 71.
    • 180. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005;22:507 17. [Erratum in: Immunity 2005;22:773 4.]
    • 181. Graham LM, Tsoni SV, Willment JA, Williams DL, Taylor PR, Gordon S, et al. Soluble Dectin-1 as a tool to detect beta-glucans. J Immunol Methods. 2006;/314:/164 9.
    • 182. Gross O, Gewies A, Finger K, Schafer M, Sparwasser T, Peschel C, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;/ 442:/651 6.
    • 183. Harada T, Kawaminami H, Miura NN, Adachi Y, Nakajima M, Yadomae T, et al. Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice. Microbiol Immunol. 2006;/50:/687 700.
    • 184. Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, et al. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNFalpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;/171:/417 25.
    • 185. Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res. 2003;/9:/176 80.
    • 186. Kaufmann I, Hoelzl A, Schliephake F, Hummel T, Chouker A, Peter K, et al. Polymorphonuclear leukocyte dysfunction syndrome in patients with increasing sepsis severity. Shock. 2006;/26:/254 61.
    • 187. Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology. 1999;/42:/61 74.
    • 188. Xia Y, Vetvicka V, Yan J, Hanikyrova M, Mayadas T, Ross GD. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol. 1999;/ 162:/2281 90.
    • 189. Yan J, Vetvicka V, Xia Y, Coxon A, Carroll MC, Mayadas TN, et al. Beta-glucan, a ''specific'' biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J Immunol. 1999;/163:/3045 52.
    • 190. Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR, et al. Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res. 2003;/63:/9023 31.
    • 191. Yan J, Allendorf DJ, Brandley B. Yeast whole glucan particle (WGP) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin Biol Ther. 2005;/5:/691 702.
    • 192. Gelderman KA, Lam S, Sier CF, Gorter A. Cross-linking tumor cells with effector cells via CD55 with a bispecific mAb induces beta-glucan-dependent CR3-dependent cellular cytotoxicity. Eur J Immunol. 2006;/36:/977 84.
    • 193. Lavigne LM, Albina JE, Reichner JS. Beta-glucan is a fungal determinant for adhesion-dependent human neutrophil functions. J Immunol. 2006;/177:/8667 75.
    • 194. Li B, Allendorf DJ, Hansen R, Marroquin J, Ding C, Cramer DE, et al. Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase pathway. J Immunol. 2006;/177:/1661 9.
    • 195. Diez-Fraile A, Meyer E, Paape MJ, Burvenich C. Analysis of selective mobilization of L-selectin and Mac-1 reservoirs in bovine neutrophils and eosinophils. Vet Res. 2003;/34:/57 70.
    • 196. Morris MR, Doull IJ, Dewitt S, Hallett MB. Reduced iC3bmediated phagocytotic capacity of pulmonary neutrophils in cystic fibrosis. Clin Exp Immunol. 2005;/142:/68 75.
    • 197. Egesten A, Blom M, Calafat J, Janssen H, Knol EF. Eosinophil granulocyte interaction with serum-opsonized particles: binding and degranulation are enhanced by tumor necrosis factor alpha. Int Arch Allergy Immunol. 1998;/115:/ 121 8.
    • 198. Balagopal A, MacFarlane AS, Mohapatra N, Soni S, Gunn JS, Schlesinger LS. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect Immun. 2006;/74:/ 5114 25.
    • 199. Jimenez Mdel P, Restrepo A, Radzioch D, Cano LE, Garcia LF. Importance of complement 3 and mannose receptors in phagocytosis of Paracoccidioides brasiliensis conidia by Nramp1 congenic macrophages lines. FEMS Immunol Med Microbiol. 2006;/47:/56 66.
    • 200. Makranz C, Cohen G, Reichert F, Kodama T, Rotshenker S. cAMP cascade (PKA, Epac, adenylyl cyclase, Gi, and phosphodiesterases) regulates myelin phagocytosis mediated by complement receptor-3 and scavenger receptor-AI/II in microglia and macrophages. Glia. 2006;/53:/441 8.
    • 201. Pan W, Ogunremi O, Wei G, Shi M, Tabel H. CR3 (CD11b/ CD18) is the major macrophage receptor for IgM antibodymediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect. 2006;/8:/1209 18.
    • 202. Bajtay Z, Csomor E, Sandor N, Erdei A. Expression and role of Fc- and complement-receptors on human dendritic cells. Immunol Lett. 2006;/104:/46 52.
    • 203. Skoberne M, Somersan S, Almodovar W, Truong T, Petrova K, Henson PM, et al. The apoptotic-cell receptor CR3, but not alphaVbeta5, is a regulator of human dendritic-cell immunostimulatory function. Blood. 2006;/108:/947 55.
    • 204. Bouhlal H, Chomont N, Requena M, Nasreddine N, Saidi H, Legoff J, et al. Opsonization of HIV with complement enhances infection of dendritic cells and viral transfer to CD4 T cells in a CR3 and DC-SIGN-dependent manner. J Immunol. 2007;/178:/1086 95.
    • 205. Boackle RJ, Nguyen QL, Leite RS, Yang X, Vesely J. Complement-coated antibody-transfer (CCAT); serum IgA1 antibodies intercept and transport C4 and C3 fragments and preserve IgG1 deployment (PGD). Mol Immunol. 2006;/43:/236 45.
    • 206. Reid DM, Montoya M, Taylor PR, Borrow P, Gordon S, Brown GD, et al. Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol. 2004;/76:/86 94.
    • 207. Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005;/35:/1539 47.
    • 208. Kennedy AD, Willment JA, Dorward DW, Williams DL, Brown GD, Deleo FR. Dectin-1 promotes fungicidal activity of human neutrophils. Eur J Immunol. 2007;/37:/467 78.
    • 209. Ozment-Skelton TR, Goldman MP, Gordon S, Brown GD, Williams DL. Prolonged reduction of leukocyte membraneassociated Dectin-1 levels following beta-glucan administration. J Pharmacol Exp Ther. 2006;/318:/540 6.
    • 210. Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol. 2007;/178:/3107 15.
    • 211. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 2005;22:507 17. [Erratum in: Immunity 2005;22:773 4.]
    • 212. Takada Y, Mukhopadhyay A, Kundu GC, Mahabaleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk proteintyrosine kinase. J Biol Chem. 2003;/278:/24233 41.
    • 213. Tohyama Y, Takano T, Yamamura H. B cell responses to oxidative stress. Curr Pharm Des. 2004;/10:/835 9.
    • 214. Dillon S, Agrawal S, Banerjee K, Letterio J, Denning TL, Oswald-Richter K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest. 2006;/116:/ 916 28.
    • 215. Breivik T, Opstad PK, Engstad R, Gundersen G, Gjermo P, Preus H. Soluble beta-1,3/1,6-glucan from yeast inhibits experimental periodontal disease in Wistar rats. J Clin Periodontol. 2005;/32:/347 52.
    • 216. Soltys J, Quinn MT. Modulation of endotoxin- and enterotoxin-induced cytokine release by in vivo treatment with beta-(1,6)-branched beta-(1,3)-glucan. Infect Immun. 1999;/67:/244 52.
    • 217. Fan H, Williams DL, Breuel KF, Zingarelli B, Teti G, Tempel GE, et al. Gi proteins regulate lipopolysaccharide and Staphylococcus aureus induced cytokine production but not (1 3)-beta-D-glucan induced cytokine suppression. Front Biosci. 2006;/11:/2264 74.
    • 218. Luhm J, Langenkamp U, Hensel J, Frohn C, Brand JM, Hennig H, et al. Beta-(1 3)-D-glucan modulates DNA binding of nuclear factors kappaB, AT and IL-6 leading to an anti-inflammatory shift of the IL-1beta/IL-1 receptor antagonist ratio. BMC Immunol. 2006;/7:/5.
    • 219. Irinoda K, Masihi KN, Chihara G, Kaneko Y, Katori T. Stimulation of microbicidal host defense mechanisms against aerosol influenza virus infection by lentinan. Int J Immunopharmacol. 1992;/14:/971 7.
    • 220. Markova N, Kussovski V, Drandarska I, Nikolaeva S, Georgieva N, Radoucheva T. Protective activity of lentinan in experimental tuberculosis. Int Immunopharmacol. 2003;/ 3:/1557 62.
    • 221. Markova N, Michailova L, Kussovski V, Jourdanova M, Radoucheva T. Intranasal application of lentinan enhances bactericidal activity of rat alveolar macrophages against Mycobacterium tuberculosis. Pharmazie. 2005;/60:/42 8.
    • 222. Raa J. The use of immunostimulatory substances in fish and shellfish farming. Rev Fish Sci. 1996;/4:/229 88.
    • 223. Figueras A, Santarem MM, Novoa B. Influence of the sequence of administration of beta-glucans and a Vibrio damsela vaccine on the immune response of turbot (Scophthalmus maximus L.). Vet Immunol Immunopathol. 1998;/64:/59 68.
    • 224. Sahoo PK, Mukherjee SC. The effect of dietary immunomodulation upon Edwardsiella tarda vaccination in healthy and immunocompromised Indian major carp (Labeo rohita). Fish Shellfish Immunol. 2002;/12:/1 16.
    • 225. Kumari J, Sahoo PK. Dietary immunostimulants influence specific immune response and resistance of healthy and immunocompromised Asian catfish Clarias batrachus to Aeromonas hydrophila infection. Dis Aquat Organ. 2006;/ 70:/63 70.
    • 226. Raa J, Berstad AKH, Bakke H, Haneberg B, Haugen IL, Holst J, et al. Novel, non-antigenic, mucosal adjuvant formulation which modulates the effects of substances, including vaccine antigens, in contact with mucosal body surfaces. Biotec Pharmacon ASA. US 09/11,582[WO 0162293]. 23-2-2000. USA. 23-2-2000. International patent published 30 August 2003. International Publication Number WO 01/62283 A2.
    • 227. Holbrook TW, Cook JA, Parker BW. Glucan-enhanced immunogenicity of killed erythrocyte stages of Plasmodium berghei. Infect Immun. 1981;/32:/542 6.
    • 228. Maheshwari R, Siddiqui MU. Immunoprotection by beta1,3 glucan antigen combination in Plasmodium berghei infection in mice. Indian J Med Res. 1989;/89:/396 403.
    • 229. Maheshwari R, Choudari BP. Potentiation of immune response against malaria in immunocompromised mice through glucan as an immunoadjuvant. Indian J Exp Biol. 1990;/28:/901 5.
    • 230. Markevich NA, Maslennikova II, Pokrovskaia EE, Osipova MV, Ispolatova AV. [The mechanisms of the formation of heterologous resistance in peroral immunization with a complex anti-influenza preparation.] Vestn Ross Akad Med Nauk 1996;(1):51 4 (in Russian).
    • 231. Ara Y, Saito T, Takagi T, Hagiwara E, Miyagi Y, Sugiyama M, et al. Zymosan enhances the immune response to DNA vaccine for human immunodeficiency virus type-1 through the activation of complement system. Immunology. 2001;/ 103:/98 105.
    • 232. Cremel M, Hamzeh-Cognasse H, Genin C, Delezay O. Female genital tract immunization: evaluation of candidate immunoadjuvants on epithelial cell secretion of CCL20 and dendritic/Langerhans cell maturation. Vaccine. 2006;/24:/ 5744 54.
    • 233. Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG. Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol. 2006;/143:/65 9.
    • 234. Mazanec MB, Coudret CL, Fletcher DR. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol. 1995;/ 69:/1339 43.
    • 235. Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Peterra J, Nedrud JG. Intracellular neutralization of Sendai and influenza viruses by IgA monoclonal antibodies. Adv Exp Med Biol. 1995;/371A:/651 4.
    • 236. Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BV, et al. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest. 2002;/ 109:/1203 13.
    • 237. Corthesy B, Benureau Y, Perrier C, Fourgeux C, Parez N, Greenberg H, et al. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol. 2006;/80:/ 10692 9.
    • 238. Wright A, Yan H, Lamm ME, Huang YT. Immunoglobulin A antibodies against internal HIV-1 proteins neutralize HIV1 replication inside epithelial cells. Virology. 2006;/356:/165 70.
    • 239. Tenovuo J, Moldoveanu Z, Mestecky J, Pruitt KM, Rahemtulla BM. Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans. J Immunol. 1982;/128:/726 31.
    • 240. Klebanoff SJ, Coombs RW. Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: possible role in heterosexual transmission. J Exp Med. 1991;/174:/289 92.
    • 241. Klebanoff SJ, Coombs RW. Viricidal effect of polymorphonuclear leukocytes on human immunodeficiency virus-1. Role of the myeloperoxidase system. J Clin Invest. 1992;/89:/ 2014 7.
    • 242. Chase MJ, Klebanoff SJ. Viricidal effect of stimulated human mononuclear phagocytes on human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992;/89:/ 5582 5.
    • 243. Chochola J, Yamaguchi Y, Moguilevsky N, Bollen A, Strosberg AD, Stanislawski M. Virucidal effect of myeloperoxidase on human immunodeficiency virus type 1-infected T cells. Antimicrob Agents Chemother. 1994;/38:/969 72.
    • 244. Klebanoff SJ, Coombs RW. Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1996;/12:/25 9.
    • 245. Furtm u¨ller PG, Jantschko W, Regelsberger G, Jakopitsch C, Arnhold J, Obinger C. Reaction of lactoperoxidase compound I with halides and thiocyanate. Biochemistry. 2002;/ 41:/11895 900.
    • 246. Laursen AL, Obel NS, Holmskov U, Jensenius JC, Aliouat el M, Andersen PL. Activation of the respiratory burst by Pneumocystis carinii. Efficiency of different antibody isotypes, complement, lung surfactant protein D, and mannanbinding lectin. APMIS. 2003;/111:/405 15.
    • 247. Lang ML, Kerr MA. Characterization of FcalphaR-triggered Ca2 signals: role in neutrophil NADPH oxidase activation. Biochem Biophys Res Commun. 2000;/276:/749 55.
    • 248. van der Pol W, Vidarsson G, Vile HA, van de Winkel JG, Rodriguez ME. Pneumococcal capsular polysaccharidespecific IgA triggers efficient neutrophil effector functions via FcalphaRI (CD89). J Infect Dis. 2000;/182:/1139 45.
    • 249. Rodriguez ME, Hellwig SM, Hozbor DF, Leusen J, van der Pol WL, van de Winkel JG. Fc receptor-mediated immunity against Bordetella pertussis. J Immunol. 2001;/167:/6545 51.
    • 250. Shibuya A, Honda S. Molecular and functional characteristics of the Fcalpha/muR, a novel Fc receptor for IgM and IgA. Springer Semin Immunopathol. 2006;/28:/377 82.
    • 251. ten Hove W, Houben LA, Raajmakers JA, Koenderman L, Bracke M. Rapid selective priming of FcalphaR on eosinophils by corticosteroids. J Immunol. 2006;/177:/6108 14.
    • 252. Desheva JA, Lu XH, Rekstin AR, Rudenko LG, Swayne DE, Cox NJ, et al. Characterization of an influenza A H5N2 reassortant as a candidate for live-attenuated and inactivated vaccines against highly pathogenic H5N1 viruses with pandemic potential. Vaccine. 2006;/24:/6859 66.
    • 253. Ferko B, Kittel C, Romanova J, Sereinig S, Katinger H, Egorov A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. J Virol. 2006;/80:/11621 7.
    • 254. Halperin SA, Smith B, Clarke K, Treanor J, Mabrouk T, Germain M. Phase I, randomized, controlled trial to study the reactogenicity and immunogenicity of a nasal, inactivated trivalent influenza virus vaccine in healthy adults. Hum Vaccin. 2005;/1:/37 42.
    • 255. Samdal HH, Bakke H, Oftung F, Holst J, Haugen IL, Korsvold GE, et al. A non-living nasal influenza vaccine can induce major humoral and cellular immune responses in humans without the need for adjuvants. Hum Vaccin. 2005;/ 1:/85 90.
    • 256. Bakke H, Haneberg B. [The development of mucosal vaccines.] Tidsskr Nor Laegeforen. 2006;126:2818 21 (in Norwegian).
    • 257. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992;/72:/101 63.
    • 258. Seabra V, Stachlewitz RF, Thurman RG. Taurine blunts LPS-induced increases in intracellular calcium and TNFalpha production by Kupffer cells. J Leukoc Biol. 1998;/64:/ 615 21.
    • 259. Wheeler MD, Thurman RG. Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine. Am J Physiol. 1999;/277:/L952 9.
    • 260. Wheeler MD, Ikejema K, Enomoto N, Stacklewitz RF, Seabra V, Zhong Z, et al. Glycine: a new anti-inflammatory immunonutrient. Cell Mol Life Sci. 1999;/56:/843 56.
    • 261. Kim SK, Kim YC. Attenuation of bacterial lipopolysaccharide-induced hepatotoxicity by betaine or taurine in rats. Food Chem Toxicol. 2002;/40:/545 9.
    • 262. Wheeler MD, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG. Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J. 2000;/14:/476 84.
    • 263. Ray NJ, Jones AJ, Keen P. GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurones in the rat trachea in vitro. Br J Pharmacol. 1991;/102:/801 4.
    • 264. Chapman RW, Hey JA, Rizzo CA, Bolser DC. GABAB receptors in the lung. Trends Pharmacol Sci. 1993;/14:/26 9.
    • 265. Minocha A, Galligan JJ. Excitatory and inhibitory responses mediated by GABAA and GABAB receptors in guinea pig distal colon. Eur J Pharmacol. 1993;/230:/187 93.
    • 266. Ozdem SS, Sadan G, Usta C, Tasatargil A. Effect of experimental diabetes on GABA-mediated inhibition of neurally induced contractions in rat isolated trachea. Clin Exp Pharmacol Physiol. 2000;/27:/299 305.
    • 267. Gentilini G, Franchi-Micheli S, Mugnai S, Bindi D, Zilletti L. GABA-mediated inhibition of the anaphylactic response in the guinea-pig trachea. Br J Pharmacol. 1995;/115:/389 94.
    • 268. Ruiz de Valderas RM, Serrano MI, Serrano JS, Fernandez A. Effect of homotaurine in experimental analgesia tests. Gen Pharmacol. 1991;/22:/717 21.
    • 269. Serrano I, Ruiz RM, Serrano JS, Fernandez A. GABAergic and cholinergic mediation in the antinociceptive action of homotaurine. Gen Pharmacol. 1992;/23:/421 6.
    • 270. Silva MA, Cunha GM, Viana GS, Rao VS. Taurine modulates chemical nociception in mice. Braz J Med Biol Res. 1993;/26:/1319 24.
    • 271. Serrano MI, Serrano JS, Guerrero MR, Fernandez A. Role of GABAA and GABAB receptors and peripheral cholinergic mechanisms in the antinociceptive action of taurine. Gen Pharmacol. 1994;/25:/1123 9.
    • 272. Serrano MI, Serrano JS, Fernandez A, Asadi I, SerranoMartino MC. GABAB receptors and opioid mechanisms involved in homotaurine-induced analgesia. Gen Pharmacol. 1998;/30:/411 5.
    • 273. Cortijo J, Blesa S, Martinez-Losa M, Mata M, Seda E, Santangelo F, et al. Effects of taurine on pulmonary responses to antigen in sensitized Brown-Norway rats. Eur J Pharmacol. 2001;/431:/111 7.
    • 274. Covarrubias J. Taurine and the lung: pharmacological intervention by aerosol route. Adv Exp Med Biol. 1994;/ 359:/413 7.
    • 275. Kontny E, Szczepanska K, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, et al. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 2000;/43:/2169 77.
    • 276. Barua M, Liu Y, Quinn MR. Taurine chloramine inhibits inducible nitric oxide synthase and TNF-alpha gene expression in activated alveolar macrophages: decreased NFkappaB activation and IkappaB kinase activity. J Immunol. 2001;/167:/2275 81.
    • 277. Liu Y, Quinn MR. Chemokine production by rat alveolar macrophages is inhibited by taurine chloramine. Immunol Lett. 2002;/80:/27 32.
    • 278. Quinn MR, Barua M, Liu Y, Serban V. Taurine chloramine inhibits production of inflammatory mediators and iNOS gene expression in alveolar macrophages; a tale of two pathways: part I, NF-kappaB signaling. Adv Exp Med Biol. 2003;/526:/341 8.
    • 279. Schuller-Levis GB, Park E. Taurine: new implications for an old amino acid. FEMS Microbiol Lett. 2003;/226:/195 202.
    • 280. Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple IL. Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res. 2004;/83:/823 31.
    • 281. Kanayama A, Inoue J, Sugita-Konishi Y, Shimizu M, Miyamoto Y. Oxidation of Ikappa Balpha at methionine 45 is one cause of taurine chloramine-induced inhibition of NF-kappa B activation. J Biol Chem. 2002;/277:/24049 56.
    • 282. Liu Y, Barua M, Serban V, Quinn MR. Production of inflammatory mediators by activated C6 cells is attenuated by taurine chloramine inhibition of NF-kappaB activation. Adv Exp Med Biol. 2003;/526:/365 72.
    • 283. Kim JW, Kim C. Inhibition of LPS-induced NO production by taurine chloramine in macrophages is mediated though Ras-ERK-NF-kappaB. Biochem Pharmacol. 2005;/70:/ 1352 60.
    • 284. Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, Okada S. Oxidative modification of IkappaB by monochloramine inhibits tumor necrosis factor alpha-induced NFkappaB activation. Biochim Biophys Acta. 2005;/1746:/ 135 42.
    • 285. Maturo J, Kulakowski EC. Taurine binding to the purified insulin receptor. Biochem Pharmacol. 1988;/37:/3755 60.
    • 286. Kulakowski EC, Maturo J. Hypoglycemic properties of taurine: not mediated by enhanced insulin release. Biochem Pharmacol. 1984;/33:/2835 8.
    • 287. Maturo J 3rd, Kulakowski EC. Insulin-like activity of taurine. Adv Exp Med Biol. 1987;/217:/217 26.
    • 288. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshuzaki K, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;/48:/ 1521 9.
    • 289. Honemann D, Chatterjee M, Savino R, Bommert K, Burger R, Gramatzki M, et al. The IL-6 receptor antagonist SANT7 overcomes bone marrow stromal cell-mediated drug resistance of multiple myeloma cells. Int J Cancer. 2001;/ 93:/674 80.
    • 290. Tassone P, Neri P, Burger R, Savino R, Shammas M, Catley L, et al. Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin Cancer Res. 2005;/11:/4251 8.
    • 291. Michalk DV, Hoffmann B, Minor T. Taurine reduces renal ischemia/reperfusion injury in the rat. Adv Exp Med Biol. 2003;/526:/49 56.
    • 292. Wang JX, Li Y, Zhang LK, Zhao J, Pang YZ, Tang CS, et al. Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits. Acta Pharmacol Sin. 2005;/26:/821 7.
    • 293. Hanna J, Chahine R, Aftimos G, Nader M, Mounayar A, Esseily F, et al. Protective effect of taurine against free radicals damage in the rat myocardium. Exp Toxicol Pathol. 2004;/56:/189 94.
    • 294. Poltronieri R, Cevese A, Sharbati A. Protective effect of selenium in cardiac ischemia and reperfusion. Cardioscience. 1992;/3:/155 60.
    • 295. Venardos K, Harrison G, Headrick J, Perkins A. Effects of dietary selenium on glutathione peroxidase and thioredoxin reductase activity and recovery from cardiac ischemiareperfusion. J Trace Elem Med Biol. 2004;/18:/81 8.
    • 296. Lymbury R, Venardos K, Perkins AV. Effect of sodium selenite-enriched reperfusion solutions on rat cardiac ischemia reperfusion injury. Biol Trace Elem Res. 2006;/114:/197 206.
    • 297. Ostadalova I, Vobecky M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, et al. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 2006 Dec 23 [Epub ahead of print].
    • 298. Blaustein A, Deneke SM, Stolz RI, Baxter D, Healey N, Fanburg BL. Myocardial glutathione depletion impairs recovery after short periods of ischemia. Circulation. 1989;/ 80:/1449 57.
    • 299. Mizui T, Kinouchi H, Chan PH. Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats. Am J Physiol. 1992;/262:/H313 7.
    • 300. Pei Z, Cheung RT. Pretreatment with melatonin exerts antiinflammatory effects against ischemia/reperfusion injury in a rat middle cerebral artery occlusion stroke model. J Pineal Res. 2004;/37:/85 91.
    • 301. Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM. Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res. 2005;/38:/67 71.
    • 302. Reiter RJ, Tan DX, Leon J, Kilic U, Kilic E. When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood). 2005;/230:/104 17.
    • 303. Aviado DM, Drimal J, Watanabe T, Lish PM. Cardiac effects of sodium selenite. Cardiology. 1975;/60:/113 20.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from