LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Govindasamy, B.; Thompson, S.; Mirin, A.; Wickett, M.; Caldeira, K.; Delire, C. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Coupled climate and carbon cycle modelling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in greater warming. In this paper we investigate the sensitivity of this feedback for year 2100 global warming in the range of 0 to 8 K. Differing climate sensitivities to increased CO2content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA), the NCAR/DOE Parallel Climate Model coupled to the IBIS terrestrial biosphere model and a modified OCMIP ocean biogeochemistry model. In our integrated model, for scenarios with year 2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO2emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO2 concentration increases are 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO2 content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.DOI: 10.1111/j.1600-0889.2005.00135.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ball, J. T., Woodraw, I. E. and Berry, J. A. 1986. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in Photosynthesis Research Volume 4 (ed. J. Biggins). Martinus Nijhoff, Zoetermeer, The Netherlands, 221-224.
    • Braswell, B. H., Schimel, D. S., Linder, E. and Moore, B. 1997. The response of global terrestrial ecosystems to interannual temperature variability. Science 278, 870-872.
    • Cao, M. and Woodward, F. I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249- 252.
    • Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J. A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: a model that includes a laminar boundary layer. Agr. Forest Meteorol. 53, 107-136.
    • Collatz, G. J., Ribas-Carbo, M. and Berry, J. A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19, 519-538.
    • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled model. Nature 408, 184-187.
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A. and co-authors. 2001. Global response of terrestrial ecosystem and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357-373.
    • Dukowicz, J. K. and Smith, R. D. 1994. Implicit free-surface method for the Bryan-Cox-Semtner ocean model. J. Geophys. Res. 99, 7991- 8014.
    • Farquhar, G. D., von Caemmerer, S. and Berry, J. A. 1980. A biogeochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149, 78-90.
    • Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D. and co-authors. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance and vegetation dynamics. Global Biogeochem. Cycles 10, 603-628.
    • Friedlingstein, P., Bopp, L., Clais, P., Dufresne, J.-L., Fairhead, L. and co-authors. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543-1546.
    • Friedlingstein, P., Dufresne, J.-L., Cox, P. M. and Rayner, P. 2003. How positive is the feedback between climate change and the carbon cycle? Tellus 55B, 692-700.
    • Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T. et al. 1997. Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochem. Cycles 11, 507-533.
    • Houghton, R. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus 55B, 378-390.
    • Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y. and Field, C. B. 2003. Nitrogen and climate change. Science 302, 1512-1513.
    • IGBP Terrestrial Carbon Working Group. 1998. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393- 1394.
    • IPCC (Intergovernmental Panel on Climate Change) 1997. An Introduction to Simple Climate Models used in the IPCC Second Assessment Report. IPCC Technical Paper II (eds. J. T. Houghton, L. G. M. Filho, D. J. Griggs and K. Masket). IPCC, Geneva, Switzerland.
    • IPCC (Intergovernmental Panel on Climate Change) 2001. Climate Change 2001, The Scientific Basis. Cambridge University Press, New York.
    • Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G. and co-authors. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochem. Cycles 15, 891-907.
    • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. Y., Briegleb, B. P. et al. 1996. Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note, NCAR/TN-420+STR. National Center for Atmospheric Research, Boulder, Colorado.
    • King, A. W., Post, W. M. and Wullschleger, S. D. 1997. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climate Change 35, 199-227.
    • Kirschbaum, M. U. F. 2000. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21-51.
    • Kucharik, C. J., Foley, J. A., Delire, C., Fisher, V. A., Coe, M. T. et al. 2000. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles 14(3), 795-825.
    • Landis, J. R. and Koch, G. G. 1977. The measurement of observer agreement for categorical date. Biometrics 33, 159-174.
    • Lloyd, J. and Jaylor, J. A. 1994. On the temperature dependence of soil respiration. Functional Ecol. 8, 315-323.
    • Maier-Reimer, E. 1993. Biogeochemical cycles in an ocean generalcirculation model-preindustrial tracer distributions. Global Biogeochem. Cycles 7(3), 645-677.
    • Maltrud, M. E., Smith, R. D., Semtner, A. J. and Malone, A. J. 1998. Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric winds. J. Geophys. Res. 103, 30 825-30 853.
    • Marland, G., Boden, T. and Andres, R. 2002. Global, regional, and national annual CO2 emissions from fossil-fuel burning, cement production and gas flaring: 1751-1999. CDIAC NDP-030. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.
    • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G. and co-authors. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15, 183-206.
    • Meehl, G. A., Washington, W. M., Arblaster, J. M. and Hu, A. 2004. Factors affecting climate sensitivity in global coupled models. J. Climate, 17, 1584-1596.
    • Monserud, R. A. 1990. Methods for comparing global vegetation maps. IIASA WP-90-40. International Institute for Applied Systems Analysis, Laxenburg, Austria.
    • Nadelhoffer, K. J., Emmett, B. A. and Gundersen, P. 1999. Nitrogen makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145-148.
    • Najjar, R. G. and Orr, J. C. 1999. Biotic How-To, Revision 1.7. Ocean Carbon-cycle Model Intercomparison Project (OCMIP). http:// www.ipsl.jussieu.fr/OCMIP/phase2/simulations/Biotic/HOWTOBiotic.html
    • Orr, J. C. and Dutay, J.-C. 1999. OCMIP mid-project workshop. Research GAIM Newsletter 3, 4-5.
    • Orr, J. C., Maier-Raimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L. et al. 2001. Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles 15, 43- 60.
    • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M. et al. 2001. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the IPCC (eds J. T. Houghton et al.). Cambridge University Press, Cambridge, pp. 183-237.
    • Prentice, I. C., Heimann, M. and Sitch, S. 2000. The carbon balance of the terrestrial biosphere; ecosystem models and atmospheric observations. Ecol. Applic. 10(6), 1553-1573.
    • Root, T. L. and Schneider, S. H. 1993. Can large scale climatic models be linked with multiscale ecological studies? Conserv. Biol. 7(2), 256- 270.
    • Sarmiento, J. L., Hughes, T. C., Stouffer, R. J. and Manabe, S. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245-249.
    • Sarmiento, J. L. and Le Quere, C. 1996. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346-1350.
    • Schimel, D. S. 1998. The Carbon equation. Nature 393, 208-209.
    • Thompson, S., Govindasamy, B., Mirin, A., Caldeira, K., Delire, C. et al. 2004. Quantifying the effects of CO2-fertilized vegetation on future climate. Geophys. Res. Lett. 31, L23211.
    • Tian, R. C., Ve´zina, A. F., Legendre, L., Ingram, R. G., Klein, B. et al. 2000. Effects of pelagic food-web interactions and nutrient remineralization on the biogeochemical cycling of carbon: a modeling approach. Deep-Sea Res. 47, 637-662.
    • Tjoelker, M. G., Oleksyn, J. and Reich, P. B. 2001. Modelling respiration of vegetation: evidence for a general temperature-dependent Q(10). Global Change Biol. 7, 223-230.
    • UNFCCC. 1997. The Kyoto Protocol to the United Nations Framework Convention on Climate Change, http://www.unfcc.int/ resource/convkp.html.
    • Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J. Jr, Bettge, T. W. et al. 2000. Parallel Climate Model (PCM) control and transient simulations. Clim. Dynam. 16, 755-774.
    • Wolf-Gladrow, D. and Riebesell, U. 1997. Diffusion and reactions in the vicinity of plankton: a refined model for inorganic carbon transport. Mar. Chem. 59, 17-34.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from