Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Camargo, Suzana J.; Barnston, Anthony G.; Zebiak, Stephen E. (2005)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
The properties of tropical cyclones in three low-resolution atmospheric general circulation models (AGCMs) in seven ocean basins are discussed. The models are forced by prescribed, observed sea surface temperatures over a period of 40 yr, and their simulations of tropical cyclone activity are compared with observations. The model cyclone characteristics considered include genesis position, number of cyclones per year, seasonality, accumulated cyclone energy, track locations, and number of storm days. Correlations between model and observed interannual variations of these characteristics are evaluated. The models are found able to reproduce the basic features of observed tropical cyclone behavior such as seasonality, general location and interannual variability, but with identifiable biases. A bias correction is applied to the tropical cyclone variables of the three models. The three AGCMs have different levels of realism in simulating different aspects of tropical cyclone activity in different ocean basins. Some strengths and weaknesses in simulating certain tropical cyclone activity variables are common to the three models, while others are unique to each model and/or basin. Although the overall skill of the models in reproducing observed interannual variability of tropical cyclone variables has not surpassed or often even equalled that of statistical models, there exists potential for higher future skills using improved versions of dynamical approaches.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arpe, K., Du¨menil, L. and Giorgetta, M. A. 1998. Variability of the Indian monsoon in the ECHAM3 model: sensitivity to sea surface temperature, soil moisture and the stratospheric quasi-biennial oscillation. J. Clim. 11, 1837-1858.
    • Avila, L. A., Pasch, R. J., Beven, J. L., Franklin, J. L., Lawrence, M. B. and co-authors. 2003. Eastern North Pacific hurricane season of 2001. Mon. Wea. Rev. 131, 249-262.
    • Bacmeister J., Pegion, P. J., Schubert, S. D. and Suarez, M. J. 2000. Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Technical Report Series on Global Modelling and Data Assimilation, NASA Technical Memorandum 104606, Vol. 17, Goddard Space Flight Center, Greenbelt, MD, USA, 194 pp.
    • Barnston, A. G., Mason, S. J., Goddard, L., DeWitt, D. G. and Zebiak, S. E. 2003. Multimodel ensembling in seasonal climate forecasting at IRI. Bull. Am. Meteorol. Soc. 84, 1783-1796.
    • Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J. and co-authors. 2000. Climate assessment for 1999. Bull. Am. Meteorol. Soc. 81, S1-S50.
    • Bengtsson, L. 2001. Hurricane threats. Science 293, 440-441.
    • Bengtsson, L., Bo¨ttger, H. and Kanamitsu, M. 1982. Simulation of hurricane-type vortices in a general circulation model. Tellus 34, 440- 457.
    • Bengtsson, L., Botzet, M. and Esch, M. 1995. Hurricane-type vortices in a general circulation model. Tellus 47A, 175-196.
    • Bengtsson, L., Botzet, M. and Esch, M. 1996. Will greenhouse gasinduced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A, 57-73.
    • Broccoli, A. J. and Manabe, S. 1990. Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Rev. Lett. 17, 1917-1920.
    • Camargo, S. J. and Sobel, A. H. 2004. Formation of tropical storms in an atmospheric general circulation model. Tellus 56 A, 56-67.
    • Camargo, S. J. and Zebiak, S. E. 2002. Improving the detection and tracking of tropical storms in atmospheric general circulation models. Wea. Forecasting 17, 1152-1162.
    • Camargo, S. J., Barnston, A. G. and Zebiak, S. E. 2004. Properties of tropical cyclones in atmospheric general circulation models. IRI Technical Report 04-02, International Research Institute for Climate Prediction, Palisades, NY, USA, 72 pp.
    • Chan, J. C. L., Shi, J. E. and Lam, C. M. 1998. Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Wea. Forecasting 13, 997-1004.
    • Cherchi, A. and Navarra, A. 2003. Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Clim. Dyn. 20, 365-379.
    • Emanuel, K. 2003. Tropical Cyclones. Ann. Rev. Earth Planet. Sci. 31, 75-104.
    • Franklin, J. L., Avila, L. A., Beven, J. L., Lawrence, M. B., Pasch, R. J. and co-authors. 2003. Eastern North Pacific hurricane season of 2002. Mon. Wea. Rev. 131, 2379-2393.
    • Goddard, L., Mason, S. J., Zebiak, S. E., Ropelewski, C. F., Basher, R. E. and co-authors. 2001. Current approaches to seasonal to interannual climate predictions. Int. J. Climatol. 21, 1111-1152.
    • Goddard, L., Barnston, A. G. and Mason, S. J. 2003. Evaluation of the IRI's “Net Assessment” seasonal climate forecasts: 1997-2001. Bull. Am. Meteorol. Soc. 84, 1761-1781.
    • Gray, W. M., Landsea, C. W., Mielke, P. W. Jr and Berry, K. J. 1993. Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting 8, 73-86.
    • Gray, W. M., Landsea, C. W., Mielke, P. W. Jr and Berry, K. J. 1994. Predicting Atlantic basin seasonal tropical cyclone activity by 1 June. Wea. Forecasting 9, 103-115.
    • Haarsma, R. J., Mitchell, J. F. B. and Senior, C. A. 1993. Tropical disturbances in a GCM. Clim. Dyn. 8, 247-257.
    • Krishnamurti, T. N. 1988. Some recent results on numerical weather prediction over the tropics. Aust. Meteorol. Mag. 36, 141-170.
    • Krishnamurti, T. N., Oosterhof, D. and Dignon, N. 1989. Hurricane prediction with a high resolution global model. Mon. Wea. Rev. 117, 631-669.
    • Kumar, K., Hoerling, M. and Rajagopalan, B. 2005. Advancing Indian monsoon rainfall predictions. Geophys. Res. Lett. 32, L08704, doi:10.1029/2004GL021979.
    • Lal, M., Cubasch, U., Perlwitz, J. and Waszkewitz, J. 1997. Simulation of the Indian monsoon climatology in ECHAM3 climate model: sensitivity to horizontal resolution. Int. J. Clim. 17, 847-858.
    • Landman, W. A., Seth, A. and Camargo, S. J. 2005. The effect of regional climate model domain choice on the simulation of tropical cyclonelike vortices in the southwestern Indian ocean. J. Climate 18, 1263- 1274.
    • Liu, K. S. and Chan, J. C. L. 2003. Climatological characteristics and seasonal forecasting of tropical cyclones making landfall along the South China coast. Mon. Wea. Rev. 131, 1650-1662.
    • Manabe, S., Holloway, J. L. and Stone, H. M. 1970. Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci. 27, 580-613.
    • Mason, S. J., Goddard, L., Graham, N. E., Yulaeva, E., Sun, L. Q. and co-authors. 1999. The IRI seasonal climate prediction system and the 1997/98 El Nin˜o event. Bull. Am. Meteorol. Soc. 80, 1853-1873.
    • May, W. H. 2003. The Indian summer monsoon and its sensitivity to the mean SSTs: simulations with the ECHAM4 AGCM at T106 horizontal resolution. J. Meteorol. Soc. Japan 81, 57-83.
    • Model User Support Group. 1992. Echam3 - atmospheric general circulation model. Technical Report 6, Das Deutshes Klimarechnenzentrum, Hamburg, Germany, 184 pp.
    • Moorthi, S. and Suarez, M. J. 1992. Relaxed Arakawa-Schubert: a parametrization of moist convection for general circulation models. Mon. Wea. Rev. 120, 978-1002.
    • Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M. and co-authors. 1996. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Technical Report 218, Max-Planck-Institute for Meteorology, Hamburg, Germany, 90 pp.
    • Royer, J.-F., Chauvin, F., Timbal, B., Araspin, P. and Grimal, D. 1998. A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim. Change 38, 307-343.
    • Ryan, B. F., Watterson, I. G. and Evans, J. L. 1992. Tropical cyclone frequencies inferred from Gray's yearly genesis parameter: validation of GCM tropical climate. Geophys. Res. Lett. 19, 1831-1834.
    • Sheskin, D. J. 2000. Handbook of Parametric and Non-parametric Statistical Procedures, 2nd edition. Chapman & Hall/CRC, Boca Raton, FL, USA.
    • Suarez, M. J. and Takacs, L. L. 1995. Documentation of the Aries/GEOS dynamical core: Version 2. Technical Report Series on Global Modelling and Data Assimilation, NASA Technical Memorandum 104606, Vol. 5, Goddard Space Flight Center, Greenbelt, MD, USA, 58 pp.
    • Sugi, M., Noda, A. and Sato, N. 2002. Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Japan 80, 249-272.
    • Thorncroft, C. and Pytharoulis, I. 2001. A dynamical approach to seasonal prediction of Atlantic tropical cyclone activity. Wea. Forecasting 16, 725-734.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Wea. Rev. 117, 1779- 1800.
    • Tsutsui, J. I. and Kasahara, A. 1996. Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J. Geophys. Res. 101, 15 013-15 032.
    • Vitart, F. D. and Stockdale, T. N. 2001. Seasonal forecasting of tropical storms using coupled GCM integrations. Mon. Wea. Rev. 129, 2521- 2537.
    • Vitart, F., Anderson, J. L. and Stern, W. F. 1997. Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J. Climate 10, 745-760.
    • Vitart, F., Anderson, J. L. and Stern, W. F. 1999. Impact of large-scale circulation on tropical storm frequency, intensity and location, simulated by an ensemble of GCM Integrations. J. Climate 12, 3237- 3254.
    • Vitart, F., Anderson, D. and Stockdale, T. 2003. Seasonal forecasting of tropical cyclone landfall over Mozambique. J. Climate 16, 3932- 3945.
    • Walsh, K. J. E. and Ryan, B. F. 2000. Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate 13, 3029- 3036.
    • Wang, B., Kang, I. S. and Lee, J. Y. 2004. Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J. Climate 17, 803-818.
    • Watterson, I. G., Evans, J. L. and Ryan, B. F. 1995. Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J. Climate 8, 3052-3066.
    • Wu, G. and Lau, N. C. 1992. A GCM Simulation of the relationship between tropical storm formation and ENSO. Mon. Wea. Rev. 120, 958-977.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from