LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
De Angelis , M.; Traversi , R.; Udisti , R. (2012)
Publisher: Co-Action Publishing/Blackwell
Journal: Tellus B
Languages: English
Types: Article
Subjects: formic acid, ice cores, climatic cycles, ice cores; polar atmosphere; formic acid; acetic acid; climatic cycles, [ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences, acetic acid, polar atmosphere
We present here the first profiles of acetate and formate concentrations in Antarctic ice for time periods that include the great climatic changes of the past. Data are from two Antarctic deep ice cores recovered on the central East Antarctic Plateau (EDC) and in the Dronning Maud Land (EDML) facing the Atlantic Ocean (European EPICA Project). Except the sporadic arrival of diluted continental plumes during glacial extrema, the main source of acetate deposited over the EDC does not seem to have changed significantly over the past 300 kyr and is related to marine biogenic activity. A more detailed study of the past 55 kyr leads to the conclusion that acetate reaching the EDML during a large part of the last glacial maximum was emitted by the Patagonian continental biomass and was uptaken along with nitric acid at the surface of mineral dust. Changes in formate concentrations are characterised by less scattered and lower values at both sites during glacial periods. We propose that the present marine source of formic acid (Legrand et al., 2004) drastically decreased but did not completely vanish under cold climate conditions, whereas the share of methane oxidation in formic acid production became prominent.Keywords: ice cores; polar atmosphere; formic acid; acetic acid; climatic cycles(Published: 5 March 2012)Citation: Tellus B 2012, 64, 17331, DOI: 10.3402/tellusb.v64i0.17331
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Al-Hosney, H. A., Carlos-Cuellar, S., Baltrusaitis, J. and Grassian, V. H. 2005. Heterogeneous uptake and reactivity of formic acid and calcium carbonate particles: a Knudsen cell reactor, FTIR and SEM study. Phys. Chem. Chem. Phys. 7, 3587 3595.
    • Andreae, M. O., Charlson, R. J., Bruynseels, F., Storms, H., Van Grieken, R. and co-authors. 1986. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620 1623.
    • Arimoto, R., Hogan, A., Grube, P., Davis, D., Webb, J. and coauthors. 2004. Major ions and radionuclides in aerosol particles from the South Pole during ISCAT-2000. Atmos. Environ. 38, 5473 5484.
    • Atkinson, A. and Whitehouse, M. J. 2001. Ammonium regeneration by Antarctic mesozooplankton: an algometric approach. Marine Biol. 139, 301 311.
    • Basile, I., Grousset, F. E., Revel, M., Petit, J.-R., Biscay, P. E. and co-authors. 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573 589.
    • Bonsang, B., Martin, D., Lambert, G., Kanakidou, M., Le Roulley, J.-C. and co-authors. 1991. Vertical distribution of nonmethane hydrocarbons in the remote marine boundary layer. J. Geophys. Res. 96, 7313 7324.
    • Bonsang, B., Polle, C. and Lambert, G. 1992. Evidence for marine production of isoprene. Geophys. Res. Lett. 19, 1129 1132.
    • Briat, M., Boutron, C. and Lorius, C. 1974. Chlorine and sodium content of East Antarctica firn samples. J. Atmos. Res. 8, 895 901.
    • Chebbi, A. and Carlier, P. 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 30(24), 4233 4249.
    • Cosme, E., Hourdin, F., Genthon, C. and Martinerie, P. 2005. The origin of dimethylsulfide (DMS), non-sea-salt sulfate, and methanesulfonic acid (MSA) in Eastern Antarctica. J. Geophys. Res. 110(D3), D03302/1 D03302/17.
    • Currie, L. A., Kessler, J. D., Fletcher, R. A. and Dibb, J. E. 2005. Long range transport of biomass aerosol to Greenland: multispectroscopic investigation of particles deposited in the snow. J. Radioanal. Nucl. Chem. 263(2), 399 411.
    • De Angelis, M., Barkov, N. I. and Petrov, V. N. 1992. Sources of continental dust over Antarctica during the last glacial cycle. J. Atmos. Chem. 14, 233 244.
    • De Angelis, M. and Legrand, M. 1995. Preliminary investigations of post depositional effects on HCl, HNO3, and organic acids in polar firn layers. In: Ice Core Studies of Global Biogeochemical Cycles (R. J. Delmas (ed.)) Vol. 30, NATO ASI Series I, Springer-Verlag, Berlin, Heidelberg, pp. 336 381.
    • De Angelis, M., Simoes, J. C., Bonnaveira, H., Taupin, J. D. and Delmas, R. J. 2003. Volcanic eruptions recorded in the Illimani ice core (Bolivia): 1918-98 and Tambora periods. Atmos. Chem. Phys. 3, 1725 1741.
    • De Angelis, M., Steffensen, J. P., Legrand, M., Clausen, H. B. and Hammer, C. U. 1997. Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: comparison with east Antarctic records. J. Geophys. Res. 102(C12), 26681 26698.
    • Delmonte, B., Basile-Doelsch, I., Petit, J.-R., Michard, A., RevelRolland, M., Maggi, V. and Gemmiti, B. 2003. Refining the isotopic (Sr-Nd) signature of potential source areas for glacial dust in East Antarctica. J. Phys. IV France 107, 365 368.
    • Dentener, F. J., Carmichael, G. R., Ahang, Y., Lelieved, J. and Crutzen, P. J. 1996. Role of mineral aerosol as a reactive surface in the global troposphere. J. Geophys. Res. 101(D17), 22869 22889.
    • Dibb, J. E. and Arsenault, M. 2002. Shouldn't snowpacks be sources of monocarboxylic acids? Atmos. Environ. 36, 2513 2522.
    • Dibb, J. E., Talbot, R. W. and Bergin, M. H. 1994. Soluble acidic species in air and snow at Summit, Greenland. Geophys. Res. Lett. 21, 1627 1630.
    • Eisele, F., Davis, D. D., Helmigc, D., Oltmans, S. J., Neff, W. and co-authors. 2008. Antarctic Tropospheric Chemistry Investigation (ANTCI) 2003 overview. Atmos. Environ. 42, 2749 2761.
    • EPICA Community Members. 2006. One to one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195 198.
    • Erbland, J., Savarino, J., Morin, S. and Frey, M. 2009a. Postdepositional processing of nitrate recorded in the Vostok ice core does not care about ice ages. Geophys. Res. Abs. 11, EGU2009-971-1.
    • Erbland, J., Savarino, J., Morin, S. and Frey, M. 2009b. The oxygen isotope anomaly (^17O) of nitrate in the Vostok ice core: insights in the possible changes in NOx oxidation pathways over the last 150 000 years. Geophys. Res. Abs. 11, EGU2009-975.
    • Fisher, H., Fundel, F., Ruth, U., Twarloh, B., Wegner, A., Udisti, R., and co-authors. 2007. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 260, 340 354.
    • Gao, Y., Anderson, J. R. and Hua, X. 2007. Dust characteristics over the North Pacific observed through shipboard measurements during the ACE-Asia experiment. Atmos. Environ. 41(36), 7907 7922.
    • Gaudichet, A., de Angelis, M., Joussaume, S., Petit, J.-R., Korotkevich, Y. S. and co-authors. 1992. Comments on the origin of dust in east Antarctica for present and ice age conditions. J. Atmos. Chem. 14, 129 142.
    • Grosjean, D. 1992. Formic and acetic acids: emissions, atmospheric formation and dry deposition at two Southern California locations. Atmos. Environ. 26A, 3269 3286.
    • Hatch, C. D., Gough, R. V. and Tolbert, M. A. 2007. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral. Atmos. Chem. Phys. 7, 4445 4458.
    • Herman, J. R., Krotkov, N., Celarier, E., Larko, D. and Labow, G. 1999. Distribution of UV radiation at the Earth's surface from TOMS-measured UV backscattered radiance. J. Geophys. Res. 104, 12059 12076.
    • Jacob, D. 1986. Chemistry of OH in remote cloud sand its role in the production of formic acid and peroxymonosulphate. J. Geophys. Res. 91, 9807 9826.
    • Jacob, D. J. and Wofsy, S. C. 1988. Photochemistry of biogenic emission over the Amazon forest. J. Geophys. Res. 93, 1477 1486.
    • Kahl, J. D. W., Martinez, D. A., Kuhns, H., Davidson, C. I., Jaffrezo, J.-L. and co-authors. 1997. Air mass trajectories to Summit, Greenland: a 44-year climatology and some episodic events. J. Geophys. Res. 102(C12), 26861 26875.
    • Kaufmann, P., Fundel, F., Fischer, H., Bigler, M., Ruth, U. and co-authors. 2010. Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean. Quatern. Sc. Rev. 29(1/2), 313 323.
    • Keene, W. C. and Galloway, J. N. 1984. Organic acidity of precipitation of North America. Atmos. Environ. 18, 2491 2497.
    • Keene, W. C. and Galloway, J. N. 1988. The biogeochemical cycling of formic and acetic acids through the troposphere: an overview of current understanding. Tellus 40, 322 334.
    • Keene, W. C., Lobert, J. M., Crutzen, P. J., Maben, J. R., Scharffe, D. H. and co-authors. 2006. Emissions of major gaseous and particulate species during experimental burns of southern African biomass. J. Geophys. Res. 111, D04301. DOI: 10.1029/2005JD006319.
    • Keene, W. C., Pszenny, A., Galloway, J. and Hawley, M. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 91, 6647 6658.
    • Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile compounds (VOC): an overview on emission, physiology, and ecology. J. Atmos. Chem. 33, 23 88.
    • Khare, P., Kumar, N. and Kumari, K. W. 1999. Atmospheric formic and acetic acids: an overview. Rev. Geophys. 37, 227 248.
    • Kim, B.-G. and Park, S.-U. 2001. Transport and evolution of a winter-time yellow sand observed in Korea. Atmos. Environ. 35, 3191 3201.
    • Koppman, R., Bauer, R., Johnen, F. R., Plass, C. and Rudolph, J. 1992. The distribution of light nonmethane hydrocarbons over the mid-Atlantic: results of the Polarstern cruise ANT VII/1. J. Atmos. Chem. 15, 215 234.
    • Kumai, M. 1976. Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole. J. Atmos. Sci. 33, 833 841.
    • Lefer, B. L., Talbot, R. W., Harris, R. C., Bradshaw, J. D., Sandholm, S. T. and co-authors. 1994. Enhancement of acidic gases in biomass burning impacted air masses over Canada. J. Geophys. Res. 99, 1721 1737.
    • Legrand, M. 1985. Chimie des neiges et glaces antarctiques: un reflet de l'environnement. PhD Thesis, Universite´ Scientifique et Me´ dicale de Grenoble, France.
    • Legrand, M. 1995. Sulphur derived species in polar ice: a review. In: Ice Core Studies of Global Biogeochemical cycles (R. Delmas (ed.)) Vol. 30, NATO ASI Ser., Ser. I, pp. 91 119. New York: Springer-Verlag.
    • Legrand, M. and de Angelis, M. 1995. Origins and variations of light carboxylic acids in polar precipitation. J. Geophys. Res. 100(D1), 1445 1452.
    • Legrand, M. and de Angelis, M. 1996. Light carboxylic acids in Greenland ice: a record of past forest fires and vegetation emissions from the boreal zone. J. Geophys. Res. 101(D2), 4129 4145.
    • Legrand, M.-R., Lorius, C., Barkov, N. Y. and Petrov, V. N. 1988. Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160,000 yrs). Atmos. Environ. 22(2), 317 331.
    • Legrand, M. and Mayewsky, P. 1997. Glaciochemistry of polar ice cores: a review. Rev. Geophys. 35(3), 219 243.
    • Legrand, M. and Wagenbach, D. 1999. Impact of the Cerro Hudson and Pinatubo volcanic eruptions on the Antarctic air ad snow chemistry. J. Geophys. Res. 104(D1), 1581 1596.
    • Legrand, M., Wolff, E. and Wagenbach, D. 1999. Antarctic aerosol and snowfall chemistry: implications for deep Antarctic ice-core chemistry. Ann. Glaciol. 29, 6672.
    • Legrand, M., Preunkert, S., Jourdain, B. and Aumont, B. 2004. Year-round records of gas and particulate formic and acetic acids in the boundary layer at Dumont D'Urville, coastal Antarctica. J. Geophys. Res. 109(D06313), 1 11.
    • Legrand M., Preunkert, S., Wagenbach, D., Cachier, H. and Puxbaum, H. 2003. A historical record of formate and acetate from a high-elevation Alpine glacier: implications for their natural versus anthropogenic budgets at the European scale. J. Geophys. Res. 108, 244788. DOI: 10.1029/2003JD003594.
    • Littot, G. C., Mulvaney, R., Ro¨ thlisberger, R., Udisti, R., Wolff, E. W. and co-authors. 2002. Comparison of analytical methods used for measuring major ions in the EPICA Dome C (Antarctica) ice core. Ann. Glaciol. 35, 299 305.
    • Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B. and co-authors. 2008. Orbital and millennial-scale features of atmospheric CH4 over the last 800,000 years. Nature 453, 383 386.
    • Madronich, S. and Calvert, J. G. 1990. Permutation reaction of organic peroxy radicals in the troposphere. J. Geophys. Res. 95, 5697 5715.
    • Madronich, S., Chatfield, R. B., Calvert, J. G., Moortgat, G. K., Veyret, B. and co-authors. 1990. A photochemical origin of acetic acid in the troposphere. Geophys. Res. Lett. 17(12), 2361 2364.
    • Matsumoto, K., Nagao, I., Tanaka, H., Miyaji, H., Iida, T. and co-authors. 1998. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmos. Environ. 32(11), 1931 1946.
    • Moreno Rivadeneira, I. 2011. Natural Variability of the Atmospheric Composition and Anthropogenic Influence in Patagonia. Contribution to the Understanding of Transport Pathways Along the Equator-Mid Latitudes-Pole Transect. PHD Thesis, Universite´ de Grenoble, France.
    • Ooki, A. and Uematsu, M. 2005. Chemical interactions between mineral dust particles and acid gas during Asian dust events. J. Geophys. Res. 110, D03201. DOI: 10.1029/2004JD004737.
    • Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B. and co-authors. 2011. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos. Chem. Phys. 11, 1989 2013.
    • Piel, C., Weller, R., Huke, M. and Wagenbach, D. 2006. Atmospheric methane sulfonate and non-sea-salt sulfate records at the European Project for Ice Coring in Antarctica (EPICA) deepdrilling site in Dronning Maud Land, Antarctica. J. Geophys. Res. 111, D03304. DOI: 10.1029/2005JD006213.
    • Preiss, N., Melie` res, M.-A. and Pourchet, M. 1996. A compilation of data on lead 210 concentrations in surface air and fluxes at the air-surface and water-sediment interfaces. J. Geophys. Res. 101(D22), 28847 28862.
    • Pretzler Prince, A., Kleiber, P. D., Grrassian, V. H. and Young, M. A. 2008. Reactive uptake of acetic acid on calcite and nitric acid reacted calcite aerosol in an environmental reaction chamber. Phys. Chem. Chem. Phys. 10, 142 152.
    • Preunkert, S., Jourdain, B., Legrand, M., Udisti, R., Becagli S. and co-authors. 2008. Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: inland versus coastal regions. J. Geophys. Res. 113, D15302. DOI: 10.1029/ 2008JD009937.
    • Ro¨ thlisberger, R., Hutterli, M. A., Sommer, S., Wolff, E. W. and Mulvaney, R. 2000. Factors controlling nitrate in ice cores: evidence from the Dome C deep ice core. J. Geophys. Res. 105, 20565 20572.
    • Ruth, U., Barnola, J.-M., Beer, J., Bigler, M., Blunier, T. and coauthors. 2007. EDML1: a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Clim. Past, 3, 475 484.
    • Savarino, J. and Legrand, M. 1998. High northern latitude forest fires and vegetation emissions over the last millennium inferred from the chemistry of a Central Greenland ice core. J. Geophys. Res. 103(D7), 8267 8279.
    • Singh, H. B., Viezee, W., Chen, Y., Bradshaw, J., Sandholm, S. and co-authors. 2000. Biomass burning influences on the composition of the remote South Pacific troposphere: analysis based on observations from PEM6Tropics-A. Atmos. Environ. 34, 635 644.
    • Staffelbach, T., Neftel, A., Stauffer, B. and Jacob, D. 1991. A record of the atmospheric methane sink from formaldehyde in polar ice cores. Nature 349, 603 605.
    • Talbot, R. W., Beecher, K. M., Harris, R. C. and Cofer, W. R. 1988. Atmospheric geochemistry of formic and acetic acids at a mid-latitude site. J. Geophys. Res. 93, 1638 1652.
    • Talbot, R. W., Andreae, M. O., Berresheim, H., Jacob, D. J. and Beecher, K. M. 1990. Sources and sinks of formic, acetic, and pyruvic acids over Central Amazonia: 2. Wet season. J. Geophys. Res. 95, 16799 16811.
    • Tissari, J., Sippula, O., Vuorio, K. and Fokiniemi, J. 2008. Fine particle and gas emissions from the combustion of agricultural fuels fired in 20 kW burner. Energy Fuels 22, 2033 2042.
    • Traversi, R., Becagli, S., Castellano, E., Cerri, O., Morganti, A. and co-authors. 2009. Study of the Dome C site (East Antarctica) variability by comparing chemical stratigraphies. Microchem. J. 92(1), 7 14.
    • Tuncel, G., Aras, N. K. and Zoller, W. H. 1989. Temporal variations and sources of elements in the south pole atmosphere 1. Nonenriched and moderately enriched elements. J. Geophys. Res. 94(D10), 13025 13038.
    • Vimeux, F., De Angelis, M., Ginot, P., Magand, O., Casassa, G. and co-authors. 2008. A promising location in Patagonia for paleoclimate and paleoenvironmental reconstructions revealed by a shallow firn core from Monte San Vanlentin (Northern Patagonia Icefield, Chile). J. Geophys. Res. 113, D16118. DOI: 10.1029/2007JD009502.
    • Voisin, D., Legrand, M. and Chaumerliac, N. 2000. Scavenging of acidic gases (HCOOH, CH3COOH, HNO3, HCl, and SO2) and ammonia in mixed liquid-solid water clouds at the Puy de Dome Mountain (France). J. Geophys. Res. 105(D5), 6817 6835.
    • Weller, R., Traufetter, F., Fisher, H., Oerter, H., Piel, C. and coauthors. 2004. Post depositional losses of methane sulfonate, nitrate, and chloride at the European Project of Ice Coring in Antarctica deep-drilling site in Dronning Maud Land, Antarctica. J. Geophys. Res. 109, D07301. DOI: 10.1029/2003 JD004189.
    • Winchester, J. W. and Wang, M.-X. 1989. Acid-base balance in aerosol components of the Asia-Pacific region. Tellus. 41B(3), 323 337.
    • Wolff, E. W., Fisher, H., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R. and co-authors. 2006. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491 496.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article