Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Altenhoff, Adrian M.; Martius, Olivia; Croci-Maspoli, Mischa; Schwierz, Cornelia; Davies, Huw C. (2008)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects: 910 Geography & travel
The link between atmospheric blocking and propagating and breaking synoptic-scale Rossby waves (termed PV streamers) are explored for the climatological period 1958–2002, using the ERA-40 re-analysis data. To this end, potential vorticity (PV) based climatologies of blocking and breaking waves are used, and features of the propagating waves is extracted from Hovmöller diagrams. The analyses cover the Northern Hemisphere during winter, and they are carried out for the Atlantic and Pacific basins separately. The results show statistically significant wave precursor signals, up to 5 d prior to the blocking onset. In the Atlantic, the precursor signal takes the form of a coherent wave train, emanating approximately 110° upstream of the blocking location. In the Pacific, a single long-lived (10 d) northerly velocity signal preludes the blocking onset. A spatial analysis is conducted of the location, frequency and form of breaking synoptic-scale Rossby waves, prior to the onset, during the lifetime and after the blocking decay. It reveals that cyclonic streamers are present to the southwest and anticyclonic streamers to the south and southeast, approximately 43% (36%) of the time in the Atlantic (Pacific) basin, and this is significantly above a climatological distribution.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Appenzeller, C. and Davies, H. C. 1992. Structure of stratospheric intrusions into the troposphere. Nature 358, 570-572.
    • Appenzeller, C., Davies, H. and Norton, W. 1996. Fragmentation of stratospheric intrusions. J. Geophys. Res.-Atmos. 101, 1435-1456.
    • Chang, E. K. M., Lee, S. Y. and Swanson, K. L. 2002. Storm track dynamics. J. Clim. 15, 2163-2183.
    • Colucci, S. J. 1985. Explosive cyclogenesis and large-scale circulation changes: implications for atmospheric blocking. J. Atmos. Sci. 42, 2701-2717.
    • Croci-Maspoli, M., Schwierz, C. and Davies, H. 2007. A multi-faceted climatology of atmospheric blocking and its recent linear trend. J. Clim. 20, 633-649.
    • Crum, F. X. and Stevens, D. E. 1988. A case-study of atmospheric blocking using isentropic analysis. Mon. Wea. Rev. 116, 223-241.
    • Davies, H. C., Scha¨r, C. and Wernli, H. 1991. The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci. 48, 1666-1689.
    • De Pondeca, M. S. F. V., Barcilon, A. and Zou, X. 1998. The role of wave breaking, linear instability, and PV transports in model block onset. J. Atmos. Sci. 55, 2852-2873.
    • Dole, R. M. and Gordon, N. D. 1983. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation - geographicaldistribution and regional persistence characteristics. Mon. Wea. Rev. 111, 1567-1586.
    • Hoskins, B. J., James, I. N. and White, G. H. 1983. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci. 40, 1595-1612.
    • Maeda, S. and Tsuyuki, T. 2000. Relationship between singular modes of blocking flow and high-frequency eddies. J. Meteorol. Soc. Jpn. 78, 631-646.
    • Martius, O., Schwierz, C. and Davies, H. C. 2006. A refined Hovmo¨ller diagram. Tellus 58A, 221-226.
    • Martius, O., Schwierz, C. and Davies, H. C. 2007. Breaking waves at the tropopause in the wintertime Northern Hemisphere: climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci. 64, 2576-2592.
    • Martius, O., Schwierz, C. and Sprenger, M. 2008. Dynamical tropopause variability and potential vorticity streamers on the northern hemisphere: a climatological analysis. Adv. Atmos. Sci. 25 No 3, 367-369.
    • Massacand, A., Wernli, H. and Davies, H. 2001. Influence of upstream diabatic heating upon an Alpine event of heavy precipitation. Mon. Wea. Rev. 129, 2822-2828.
    • Michelangeli, P. A. and Vautard, R. 1998. The dynamics of EuroAtlantic blocking onsets. Q. J. R. Meteorol. Soc. 124, 1045-1070.
    • Mullen, S. L. 1986. The local balances of vorticity and heat for blocking anticyclones in a spectral general-circulation model. J. Atmos. Sci. 43, 1406-1441.
    • Nakamura, H. 1992. Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci. 49, 1629-1642.
    • Nakamura, H. 1994. Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe. Geophys. Res. Lett. 21, 2003-2006.
    • Nakamura, H. and Fukamachi, T. 2004. Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Q. J. R. Meteorol. Soc. 130, 1213-1233.
    • Nakamura, H. and Wallace, J. M. 1993. Synoptic behavior of baroclinic eddies during the blocking onset. Mon. Wea. Rev. 121, 1892-1903.
    • Nakamura, H., Nakamura, M. and Anderson, J. L. 1997. The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev. 125, 2074-2093.
    • Orlanski, I. 2003. Bifurcation in eddy life cycles: implications for storm track variability. J. Atmos. Sci. 60, 993-1023.
    • Pelly, J. L. and Hoskins, B. J. 2003. A new perspective on blocking. J. Atmos. Sci. 60, 743-755.
    • Polvani, L. and Esler, J. G. 2007. Transport and mixing of chemical airmasses in idealized baroclinic life cycles. J. Geophys. Res. 112, D23102, doi:10.1029/2007JD008555.
    • Schwierz, C. 2001. Interactions of Greenlands-Scale Orography and Extra-Tropical Synoptic-Scale Flow. Phd Dissertation ETH No. 14356. Swiss Federal Institute of Technology .
    • Schwierz, C., Croci-Maspoli, M. and Davies, H. C. 2004a. Perspicacious indicators of atmospheric blocking. Geophys. Res. Lett. 31, Art. No. L06125.
    • Schwierz, C., Dirren, S. and Davies, H. C. 2004b. Foreced waves on a zonally aligned jet stream. J. Atmos. Sci. 61, 73-87.
    • Shutts, G. J. 1983. The propagation of eddies in diffluent jetstreams - eddy vorticity forcing of blocking flow-fields. Q. J. R. Meteorol. Soc. 109, 737-761.
    • Swanson, K. L. 2001. Blocking as a local instability to zonally varying flows. Q. J. R. Meteorol. Soc. 127, 1341-1355.
    • Swanson, K. L., Kushner, P. and Held, I. 1997. Dynamics of barotropic storm tracks. J. Atmos. Sci. 54, 791-810.
    • Thorncroft, C. D., Hoskins, B. J. and McIntyre, M. F. 1993. 2 paradigms of baroclinic-wave life-cycle behavior. Q. J. R. Meteorol. Soc. 119, 17-55.
    • Tibaldi, S. and Molteni, F. 1990. On the operational predictability of blocking. Tellus 42A, 343-365.
    • Uppala, S. M., Ka˚allberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. and co-authors. 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961-3012.
    • Vautard, R. and Legras, B. 1988. On the source of midlatitude lowfrequency variability, part 2: nonlinear equilibration of weather regimes. J. Atmos. Sci. 45, 2845-2867.
    • Wernli, H. and Sprenger, M. 2007. Identification and ERA15 Climatology of potential vorticity streamers and cut-offs near the extratropical tropopause. J. Atmos. Sci. 64, 1569-1586.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article