Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nilsson, T.; Gradinarsky, L.; Elgered, G. (2007)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d’emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly.We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Beutler, G., Rothacher, M., Schaer, S., Springer, T. A., Kouba, J. and co-authors. 1999. The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences. Adv. Space Res, 23, 631-635.
    • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A. and co-authors. 1992. GPS meteorology: remote sensing of atmospheric water vapour using the global positioning system. J. Geophys. Res. 97(D14), 15 787-15 801.
    • Bock, O., Doerflinger, E., Masson, F., Walpersdorf, A., Van-Baelen, J. and co-authors. 2004. GPS water vapour project associated to the ESCOMPTE programme: description and first results of the field experiment. Phy. Chem. Earth 29, 149-157.
    • Brown, R. G. and Hwang, P. Y. C. 1997. Introduction to Random Signals and Applied Kalman Filtering. John Wiley & Sons, 3rd edition.
    • Champollion, C., Mason, F., Bouin, M.-N., Walpersdorf, A., Doerflinger, E. and co-authors. 2005. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric Research, 74, 253-274.
    • Cros, B., Durand, P., Cachier, H., Drobinski, Ph., Frejafon, E. and coauthors. 2004. The ESCOMPTE program: an overview. Atmospheric Research, 69, 241-279.
    • Elo´segui, P. and Davis, J. 2003. Accuracy assessment of GPS slantpath determinations. In Proc. International Workshop on GPS Meteorology, Tsukuba, Japan. URL http://dbx.cr.chiba-u.jp/Gps Met/ gpsmet/index.html.
    • Emardson, T. R., Elgered, G. and Johansson, J. M. 1998. Three months of continuous monitoring of atmospheric water vapour with a network of Global Positioning System receivers. J. Geophys. Res. 103(D2), 1807-1820.
    • Flores, A., de Arellano, J. V.-G., Gradinarsky, L. P. and Rius, A. 2001. Tomography of the lower troposphere using a small dense network of GPS receivers. IEEE Trans. Geosci. Remote Sensing 39, 439-447.
    • Gradinarsky, L. and Jarlemark, P. 2004. Ground-based GPS tomography of water vapour: Analysis of simulated and real data. J. Meteorol. Soc. Japan 82, 551-560.
    • Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J. 2001. GPS: Theory and Practice. Springer-Verlag, 5th edition.
    • King, R. W. 2002. Documentation for the GAMIT GPS analysis software. Technical report, MIT. URL http://www-gpsg.mit.edu/ simon/gtgk/GAMIT.pdf.
    • Lutz, S., Troller, M., Somieski, A., Walpersdorf, A., Doerflinger, E. and co-authors. 2004. GPS tomography and remote sensing techniques for water vapor determination in the ESCOMPTE campaign. In Proceedings of the IGS Workshop & Symposium, Berne, Switzerland. URL http://igscb.jpl.nasa.gov/.
    • Miloshevich, L. M., Vo¨mel, H., Whiteman, D. N., Lesht, B. M., Schmidlin, F. J. and co-authors. 2006. Absolute accuracy of water vapour measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation. J. Geophys. Res. 111, D09S10.
    • Nilsson, T. 2005. Assessment of tomographic methods for estimation of atmospheric water vpor using ground-based GPS. Technical Report 6L, Dept. Radio Space Sci., Chalmers Univ. Tech. Go¨teborg, Sweden.
    • Nilsson, T. and Gradinarsky, L. 2006. Water vapour tomography using GPS phase observations: Simulaton results. IEEE Trans. Geosci. Remote Sensing 6(14), 2927-2941.
    • Nilsson, T., Gradinarsky, L. and Elgered, G. 2005. Estimating the 3-D structure of the atmospheric water vapor using GPS phase observations. In Proceedings of RadioVetenskap och Kommunikation, RVK 2005, 521-526, Linko¨ping, Sweden. URL http:// www.es.isy.liu.se/rvk05/ final/00085Uy1iigccqA PxHNvocCC.pdf.
    • Rocken, C., Hove, T. Van, Johnson, J., Solheim, F., Ware, R., Bevis, M. and co-authors. 1995. GPS/STORM - GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol. 12, 468-478.
    • Shoji, Y., Nakamura, H., Iwabuchi, T., Aonashi, K., Seko, H. and co-authors. 2004. Tsukuba GPS dense net campaign observations: improving in GPS analysis of slant path delay by stacking one-way postfit residuals. J. Meteorol. Soc. Jpn. 82(1B), 301-314.
    • Tregoning, P., Boers, R., O'Brien, D. and Hendy, M. 1998. Accuracy of absolute precipitable water vapour estimates from GPS observations. J. Geophys. Res. 103, 28 701-28 710.
    • Treuhaft, R. N. and Lanyi, G. E. 1987. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci. 22, 251-265.
    • Troller, M., Bu¨rki, B., Cocard, M., Geiger, A. and Kahle, H.-G. 2002. 3-D refractivity field from GPS double difference tomography. Geophys. Res. Lett. 29, 2149.
    • Walpersdorf, A., Bock, O., Doerflinger, E., Masson, F., van Baelen, J. and co-authors. 2004. Data analysis of a dense GPS network operated during the escompte campaign: first results. Phys. Chem. Earth 29(2- 3), 201-211.
    • Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K. and coauthors. 2002. Corrections of humidity measurement errors from the Vaisala RS-80 radiosonde - Application to TOGA-COARE data. J. Atmos. Oceanic Technol. 19, 981-1002.
    • Wang, Z., Wu, Y., Zhang, K. and Meng, Y. 2005. Triple-frequency method for high-order ionospheric refractive error modelling in GPS modernization. Journal of Global Positioning Systems 4, 291- 295.
    • Webb, F. H. and Zumberge, J. F. 1993. An introduction to the GIPSY/OASIS-II. JPL Publ. D-11088, Jet Propul. Lab., Pasadena, California.
    • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102(B3), 5005-5017.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from