LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
James, P. M.; Peters, D.; Waugh, D. W. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
The large-scale ozone distribution over the northern hemisphere undergoes strong fluctuationseach winter on timescales of up to a few weeks. This is closely linked to changes in the stratosphericpolar vortex, whose shape, intensity and location vary with time. Elliptical diagnosticparameters provide an empirical description of the daily character of the polar vortex. Theseparameters are used as an objective measure to define two characteristic wintertime vortexdisplacements, towards northern Europe and Canada, respectively. The large-scale structuresin both the stratosphere and troposphere and the 3D ozone structures are determined for bothvortex displacement scenarios. A linear ozone transport model shows that the contribution ofhorizontal ozone advection dominates locally in the middle stratosphere. Nevertheless, thelargest contribution is due to vertical advection around the ozone layer maximum. The findingsare in agreement with an EOF analysis which reveals significant general modes of ozone variabilitylinked to polar vortex displacement and to phase-shifted large-scale tropospheric waves.When baroclinic waves travel through the regions of vortex-related ozone reduction, the combinedeffect is to produce transient synoptic-scale areas of exceptionally low ozone; namelydynamically induced strong ozone mini-holes.DOI: 10.1034/j.1600-0889.2000.00128.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Dobson, G. M. B., Harrison, D. N. and Lawrence, J. 1929. Measurements of the amount of ozone in the earth's atmosphere and its relation to other geophysical conditions: Part III. Proc. Roy. Soc. L ondon A122, 456-486.
    • Ertel, H. 1942. Ein neuer hydrodynamischer Wirbelsatz, Meteor. Z. 59, 277-281.
    • Graf, H.-F., Kirchner, I. and Perlwitz, J. 1998. Changing lower stratospheric circulation: the role of ozone and greenhouse gases. J. Geophys. Res. 103, D10, 11251-11261.
    • Greisiger, K. M., Peters, D., Entzian, G. and Hinrichs, C.-O. 1998. The mid-latitude horizontal and vertical structure of the zonally asymmetric intraseasonal and interannual ozone variability in boreal winters. Climate Dynamics 14, 891-904.
    • James, P. M., Peters, D. and Greisiger, K. M. 1997. A study of ozone mini-hole formation using a tracer advection model driven by barotropic dynamics. Meteorol. Atmos. Phys. 64, 107-121.
    • James, P. M. 1998. A climatology of ozone mini-holes over the northern hemisphere. Int. J. Climatol. 18, 1287-1303.
    • Kurzeja, R. J. 1984. Spatial variability of total ozone at high latitudes in winter. J. Atmos. Sci. 41, 695-697.
    • McIntyre, M. E. and Palmer, T. N. 1983. Breaking planetary waves in the stratosphere. Nature 305, 593-600.
    • McKenna, D., Jones, R. L., Austin, J., Browell, E. V., McCormick, M. P., Krueger, A. J. and Tuck, A. F. 1989. Diagnostic studies of the Antarctic vortex during the 1987 Airbourne Antarctic Ozone Experiment: Ozone mini-holes. J. Geophys. Res. 94, 11641-11668.
    • McPeters, R. D., Heath, D. F. and Bhartia, P. K. 1984. Average ozone profiles for 1979 from NIMBUS 7 SBUV instrument. J. Geophys. Res. 89, 5199-5214.
    • Newman, P. A., Lait, L. R. and Schoeberl, M. R. 1988. The morphology and meteorology of southern hemisphere Spring total ozone mini-holes. Geophys. Res. L et. 15, 923-926.
    • Peters, D. and Entzian, G. 1999. Longitude-dependent decadal changes of total ozone in boreal winter months during 1979-1992. Journal of Climate 12, 1038-1048.
    • Peters, D., Egger, J. and Entzian, G. 1995. Dynamical aspects of ozone mini-hole formation. Meteorol. Atmos. Phys. 55, 205-214.
    • Peters, D., Entzian, G. and Schmitz, G. 1996. Ozone anomalies over the North Atlantic-European region during January 1979-1992, linear modeling of horizontal and vertical ozone transport by ultra-long waves. Beitr. Phys. Atmos. 69, 477-489.
    • Petzoldt, K. 1999. The role of dynamics in total ozone deviations from their long-term mean over the northern hemisphere. Ann. Geophysicae 17, 231-241.
    • Petzoldt, K., Naujokat, B. and Neugebohren, K. 1994. Correlation between stratospheric temperature, total ozone and tropospheric weather systems. Geophys. Res. L ett. 21, 1203-1206.
    • Plumb, R. A. et al. 1994. Intrusions into the lower stratospheric arctic vortex during the winter of 1991/92. J. Geophys. Res. 99, 1089-1106.
    • Randel, J. W. 1992. Global atmospheric circulation statistics, 1000-1 mb. NCAR, T N 366+ST R. NCAR Technical Note, Boulder, CO.
    • Reed, R. J. 1950. The role of vertical motions in ozone - weather relationships. J. Met. 7, 263-267.
    • Rood, R. B., Nielsen, J. E., Stolarski, R. S., Douglas, A. R., Kaye, J. A. and Allen, D. J. 1992. Episodic total ozone minima and associated eVects on heterogeneous chemistry and lower stratospheric transport. J. Geophys. Res. 97, 7979-7996.
    • Scherhag, R. 1952. Die explosionsartige Stratospha¨renerwa¨rmungen des Spa¨twinters 1951/52. Berichte des Deutschen Wetterdienstes in der US-Zone 6, nr. 38, 51-63.
    • Shindell, D. T., Miller, R. L., Schmidt, G. A. and Pandolfo, L. 1999. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399, 452-455.
    • Schmitz, G., Peters, D. and Entzian, G. 2000. Tropopause pressure change in January during 1979-1992. Meteorol. Z. 9, in press.
    • Thompson, D. W. J. and Wallace, J. M. 1998. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. L ett. 25, 1297-1300.
    • Waugh, D. W. 1997. Elliptical diagnostics of stratospheric polar vortices. Q. J. R. Meteorol. Soc. 123, 1725-1748.
    • Waugh, D. W. and Randel, W. J. 1999. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 56, 1594-1613.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from