LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karlqvist, Olle (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
A non-iterative method for solving boundary value problems of elliptic difference equations is developed that is based on the simple structure of the triangular matrices obtained by applying the well-known elimination procedure of Gauss to the matrix of the difference equation. It is proved that the procedure is numerically stable, i. e., there is no tendency to error-growth. The method seems to be particularly suited to such problems as weather forecasting on high-speed computing machines where one has to solve the same equations (e. g., Poisson's or Helmholtz's) a great number of times with the same net but different right member and boundary values. The number of stored constants as well as the computational work in the application of the method is only a fractional part of that required when using the inverse matrix (Green's function). Poisson's equation for a rectangular region is given a close study, but the method can be applied to irregular regions and to equations of higher order.DOI: 10.1111/j.2153-3490.1952.tb01025.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • BODEWIGE,., 1947: Bericht uber die verschiedenen Methoden zur Losung eines Systems linearer Gleichungen mit reellen Koeffizienten. Proc. Kon. Ned. Akad. v. Wetensch. vol. L, nr 8, pp. 930-941, nr 9, pp. 1105-1116.
    • CHARNE YJ., G., FJBRTOFT, R., and V. NEUMAN NJ., 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, pp. 237-254.
    • COLLATZL,., 1951 : Numerisclte Behandlung von Differentialgleichungen. Berlin, Springer-Verlag. p. 205 ff. and p, 269 ff.
    • COURANTR, ., FRIEDRICHSK,., und LEWY,H., 1928: Uber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100, pp. 32-74.
    • HYMANM,., 1952: Non-iterative numerical solution of boundary-value problems. A p p l . Sci. Res., 2 (B), nr 5 , PP. 325-351.
    • LAASONENP., 1948: Uber die erste und zweite Randwerteaufgabe der praharmonischen und harmonischen Funktionen. Ann. Acad. Sci. Fennirae, ser. A, nr 40. 28 pp.
    • MOSKOVITDZ,., 1944: The numerical solution of Laplace's and Poisson's equations. Qnart. o j A p p l . Math., 2 pp. 148-163.
    • PLATZMAGN., 1952: Some remarks on high-speed automatic computers and their use in meteorology. Tellus, 4, pp. 168-178.
    • RUTHERFORDD., E., 1946: Some continuant determinants arising in physics and chemistry. Proc. Roy. Soc. Edinburgh, 62 sec. A, pp. 229-236.
    • SOUTHWELRL.,V., 1946: Relaxation methods in theoretical physics. Oxford. Clarendon Press, 248 pp.
    • STIEFELE.,, 1952: Ueber einige Methoden der Relaxationsrechnung. Zeitsch. jiir Angew. Math. und Physik, 3. PP- 1-33.
    • STOHRA,., 1950: Uber einige lineare partielle Differenzengleichungen mit konstanten Koeffizienten. Mathematische Nachrichten, 3 ; Erster Teil pp. 208-242. Zweiter Teil pp. 295-315. Dritter Teil pp. 330-357.
    • TURINGA,. M., 1948: Rounding-off errors in matrix processes. Quart. J. cf Mech. and A p p l . Math., I, pp. 287-308.
    • ZURMUHLR,., 1950: Matrizen. Berlin. Springer-Verlag. pp. 248-285.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from