Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zahorowski, W.; Griffiths, A. D.; Chambers, S. D.; Williams, A. G.; Law, R. M.; Crawford, J.; Werczynski, S. (2013)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, Southern Ocean, Cape Grim, radon flux density, ocean, atmospheric radon; radon flux density; ocean; Southern Ocean; Cape Grim, atmospheric radon, atmospheric physics
Radon concentrations measured between 2001 and 2008 in marine air at Cape Grim, a baseline site in north-western Tasmania, are used to constrain the radon flux density from the Southern Ocean. A method is described for selecting hourly radon concentrations that are least perturbed by land emissions and dilution by the free troposphere. The distribution of subsequent radon flux density estimates is representative of a large area of the Southern Ocean, an important fetch region for Southern Hemisphere climate and air pollution studies. The annual mean flux density (0.27 mBq m−2 s−1) compares well with the mean of the limited number of spot measurements previously conducted in the Southern Ocean (0.24 mBq m−2 s−1), and to some spot measurements made in other oceanic regions. However, a number of spot measurements in other oceanic regions, as well as most oceanic radon flux density values assumed for modelling studies and intercomparisons, are considerably lower than the mean reported here. The reported radon flux varies with seasons and, in summer, with latitude. It also shows a quadratic dependence on wind speed and significant wave height, as postulated and measured by others, which seems to support our assumption that the selected least perturbed radon concentrations were in equilibrium with the oceanic radon source. By comparing the least perturbed radon observations in 2002–2003 with corresponding ‘TransCom’ model intercomparison results, the best agreement is found when assuming a normally distributed radon flux density with σ=0.075 mBq m−2 s−1.Keywords: atmospheric radon, radon flux density, ocean, Southern Ocean, Cape Grim(Published: 14 February 2013)Citation: Tellus B 2013, 65, 19622, http://dx.doi.org/10.3402/tellusb.v65i0.19622
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arnold, D., Vargas, A., Vermeulen, A. T., Verheggen, B. and Seibert, P. 2010. Analysis of radon origin by backward atmospheric transport modelling. Atmos. Environ. 44, 494 502.
    • Ayers, G. P. and Galbally, I. E. 1995. A preliminary estimation of a boundary layer free troposphere entrainment velocity at Cape Grim. In: Baseline Atmospheric Program Australia 1992 (eds. A. L. Dick and P. J. Fraser). Australian Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, pp. 10 15.
    • Boers, R. and Betts, A. K. 1988. Saturation point structure of marine stratocumulus clouds. J. Atmos. Sci. 45, 1156 1175.
    • Boers, R., Krummel, P. B., Siems, S. T. and Hess, G. D. 1998. Thermodynamic structure and entrainment of stratocumulus over the Southern Ocean. J. Geophys. Res. 103(D13), 16637 16650.
    • Bretherton, C. S., Austin, P. and Siems, S. T. 1995. Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part II: cloudiness, drizzle, surface fluxes, and entrainment. J. Atmos. Sci. 52(16), 2724 2735.
    • Broecker, W. S. and Peng, T.-H. 1971. The vertical distribution of radon in the BOMEX area. Earth. Planet. Sci. Lett. 11, 99 108.
    • Broecker, W. S. and Peng, T.-H. 1974. Gas exchange rates between air and sea. Tellus. 24(1 2), 21 35.
    • Clarke, A. D., Uehara, T. and Porter, J. N. 1996. Lagrangian evolution of an aerosol during the Atlantic stratocumulus transition experiment. J. Geophys. Res. 101(D2), 4351 4362.
    • Conen, F. and Robertson, L. 2002. Latitudinal distribution of radon-222 flux from continents. Tellus. B. 54(2), 127 133.
    • Cotton, W. R., Alexander, G. D., Hertenstein, R., Walko, R. L., McAnelly, R. L. and co-authors. 1995. Cloud venting*a review and some new global annual estimates. Earth-Sci. Rev. 39, 169 206.
    • D'Asaro, E. and McNeil, C. 2007. Air*sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst. 66(1 4), 92 109.
    • Dentener, F., Feichter, J. and Jeuken, A. 1999. Simulation of the transport of Rn222 using on-line and offline global models at different horizontal resolutions: a detailed comparison with measurements. Tellus. B. 51, 573 602.
    • De Roode, S. R. and Duynkerke, R. G. 1997. Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: mean state and turbulence structure. J. Atmos. Sci. 54(17), 2157 2173.
    • Draxler, R. R. 1991. The accuracy of trajectories during ANATEX calculated using dynamic model analysis versus raw in sonde observations. J. Appl. Meteorol. 30, 1466 1467.
    • Duen˜ as, C., Ferna´ ndez, M. C. and Martinez, M. P. 1983. Radon from the ocean surface. J. Geophys. Res. 88(C13), 8613 8616.
    • Duynkerke, P. G. and Teixeira, J. 2001. Comparison of the ECMWF reanalysis with FIRE I observations: diurnal variation of marine stratocumulus. J. Clim. 14(7), 1466 1478.
    • Engstro¨ m, A. and Magnusson, L. 2009. Estimating trajectory uncertainties due to flow dependent error in the atmospheric analysis. Atmos. Chem. Phys. 9, 8857 8867.
    • Faloona, I. 2009. Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmos. Environ. 43(18), 2841 2854.
    • Fangohr, S. and Woolf, D. K. 2007. Application of new parameterizations of gas transfer velocity and their impact on regional and global marine CO2 budgets. J. Mar. Syst. 66, 195 203.
    • Goto, M., Moriizumi, J., Yamazawa, H., Iida, T. and Zhuo, W. 2008. Estimation of global radon exhalation rate distribution. In: The Natural Radiation Environment, 8th International Symposium (NRE VIII) (eds. A. S. Paschoa and S. Friedrich), Vol. 1034, American Institute of Physics Conference Proceedings, Melville, New York, pp. 169 172.
    • Griffiths, A. D., Zahorowski, W., Element, A. and Werczynski, S. 2010. A map of radon flux at the Australian land surface. Atmos. Chem. Phys. 10, 8969 8982.
    • Hill, A. A., Dobbie, S. and Yin, Y. 2008. The impact of aerosols on non-precipitating marine stratocumulus. I: model description and prediction of the indirect effect. Q. J. Roy. Meteorol. Soc. 134(634), 1143 1154.
    • Hoang, C.-T. and Servant, J. 1972. Radon flux from the sea (in French). C. R. Acad. Sci. Paris. 274, 3157 3160.
    • Jacob, D. J. and Prather, M. J. 1990. Radon-222 as a test of convective transport in a general circulation model. Tellus. B. 42, 118 134.
    • Jacob, D., Prather, M., Rasch, P., Shia, R., Balkanski, Y. and co-authors. 1997. Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. 102, 5953 5970.
    • Jeffery, C. D., Robinson, I. S., Woolf, D. K. and Donlon, C. J. 2008. The response to phase-dependent wind stress and cloud fraction of the diurnal cycle of SST and air sea CO2 exchange. Ocean. Model. 23, 33 48.
    • Kawabata, H., Narita, H., Harada, K., Tsunogai, S. and Kusakabe, M. 2003. Air*sea gas transfer velocity in stormy winter estimated from radon deficiency. J. Oceanogr. 59, 651 661.
    • Kawa, S. R. and Pearson, R. J. 1989. An observational study of stratocumulus entrainment and thermodynamics. J. Atmos. Sci. 46(17), 2649 2661.
    • Kritz, M. A. 1983. Use of long-lived radon daughters as indicators of exchange between the free troposphere and the marine boundary layer. J. Geophys. Res. 88(C13), 8569 8573.
    • Kritz, M. A., Rosner, S. W. and Stockwell, D. Z. 1998. Validation of an off-line three-dimensional chemical transport model using observed radon profiles: 1 observations. J. Geophys. Res. 103(D7), 8425 8432.
    • Ku, T. L., Li, Y. H., Mathieu, G. G. and Wong, H. K. 1970. Radium in the Indian*Antarctic Ocean south of Australia. J. Geophys. Res. 75(27), 5286 5292.
    • Law, R. M., Peters, W., Rodenbeck, C., Aulagnier, C., Baker, I. and co-authors. 2008. TransCom model simulations of hourly atmospheric CO2: experimental overview and diurnal cycle results for 2002. Global. Biogeochem. Cycles. 22, GB3009.
    • Law, R. M., Steele, L. P., Krummel, B. P. and Zahorowski, W. 2010. Synoptic variations in atmospheric CO2 at Cape Grim: a model intercomparison. Tellus. B. 62, 810 820.
    • Lenschow, D. H., Krummel, P. B. and Siems, S. T. 1999. Measuring entrainment, divergence, and vorticity on the mesoscale from aircraft. J. Atmos. Ocean. Tech. 16, 1384 1400.
    • Lock, A. P. 2009. Factors influencing cloud area at the capping inversion for shallow cumulus clouds. Q. J. Roy. Meteorol. Soc. 135(641), 941 952.
    • Mahowald, N. M., Rasch, P. J., Eaton, B. E., Whittlestone, S. and Prinn, R. G. 1997. Transport of 222radon to the remote troposphere using the model of atmospheric transport and chemistry and assimilated winds from ECMWF and the national center for environmental prediction/NCAR. J. Geophys. Res. 102(D23), 28139 128151.
    • McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P. and co-authors. 2004. Air*sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109, C08S02.
    • McNeil, C. and D'Asaro, E. 2007. Parameterization of air sea gas fluxes at extreme wind speeds. J. Mar. Syst. 66, 110 121.
    • Moeng, C.-H., Cotton, W. R., Stevens, B., Bretherton, C., Rand, H. A. and co-authors. 1996. Simulation of a stratocumulustopped PBL: intercomparison among different numerical codes. Bull. Am. Meteorol. Soc. 77, 261 278.
    • Sollazzo, M. J., Russell, L. M., Percival, D., Osborne, S. R., Wood, R. and co-authors. 2000. Entrainment rates during ACE2 Lagrangian experiments calculated from aircraft measurements. Tellus. B. 52, 335 347.
    • Stevens, B., Lenschow, D. H., Faloona, I., Moeng, C.-H., Lilly, D. K. and co-authors. 2003. On entrainment rates in nocturnal marine stratocumulus. Q. J. Roy. Meteorol. Soc. 129(595), 3469 3493.
    • Stohl, A. 1998. Computation, accuracy and applications of trajectories a review and bibliography. Atmos. Environ. 32(6), 947 966.
    • Stohl, A., Eckhardt, S., Forster, C., James, P., Spichtinger, N. and co-authors. 2002. A replacement for simple backtrajectory calculations in the interpretation of atmospheric trace substance measurements. Atmos. Environ. 36(29), 4635 4648.
    • Stroeve, J. and Meier, W. 2012. Sea Ice Trends and Climatologies from SMMR and SSM/I. National Snow and Ice Data Center Digital Media, Boulder, CO.
    • Szegvary, T., Conen, F. and Ciais, P. 2009. European 222Rn inventory for applied atmospheric studies. Atmos. Environ. 43(8), 1536 1539.
    • Taguchi, S., Iida, T. and Moriizumi, J. 2002. Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations. Tellus. B. 54(3), 250 268.
    • Tsoukala, V. K. and Moutzouris, C. I. 2008. Gas transfer under breaking waves: experiments and an improved vorticity-based model. Ann. Ge´ophys. B. 26, 2131 2142.
    • von Engeln, A., Nedoluha, G. and Teixeira, J. 2003. An analysis of the frequency and distribution of ducting events in simulated radio occultation measurements based on ECMWF fields. J. Geophys. Res. 108(D21), 4669.
    • von Engeln, A., Teixeira, J., Wickert, J. and Buehler, A. S. 2005. Using CHAMP radio occultation data to determine the top altitude of the planetary boundary layer. Geophys. Res. Lett. 32, L06815.
    • Wang, Q., Lenschow, D. H., Pan, L., Schillawski, R. D., Kok, G. L. and co-authors. 1999a. Characteristics of the marine boundary layer during two Lagrangian measurement periods. 2. Turbulence structure. J. Geophys. Res. 104(D17), 21767 21784.
    • Wang, Q., Lenschow, D. H., Pan, L., Schillawski, R. D., Kok, G. L. and co-authors. 1999b. Characteristics of marine boundary layers during two Lagrangian measurement periods. 1. General conditions and mean characteristics. J. Geophys. Res. 104(D17), 21751 21765.
    • Wang, S., Golaz, J.-C. and Wang, Q. 2008. Effect of intense wind shear across the inversion on stratocumulus clouds. Geophy. Res. Lett. 35(15), L15814.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5), 7373 7382.
    • Warren, S. G., Hahn, C. J., London, J., Chervin, R. M. and Jenne, R. L. 1988. Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean. USDOE Office of Energy Research, Washington, DC (USA).
    • Wen, D., Lin, J. C., Millet, D. B., Stein, A. F. and Draxler, R. R. 2012. A backward-time stochastic Lagrangian air quality model. Atmos. Environ. 54, 373 386.
    • Whittlestone, S. and Zahorowski, W. 1998. Baseline radon detectors for shipboard use: development and deployment in the first Aerosol Characterization Experiment (ACE 1). J. Geophys. Res. 103, 16743 16751.
    • Wilkening, M. H. and Clements, W. E. 1975. Radon-222 from the ocean surface. J. Geophys. Res. 80, 3829 3830.
    • Williams, A. G., Chambers, S., Zahorowski, W., Crawford, J., Matsumoto, K. and co-authors. 2009. Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island. Tellus. B. 61(5), 732 746.
    • Williams, A. G., Zahorowski, W., Chambers, S., Griffiths, A., Hacker, J. M. and co-authors. 2011. The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci. 68(1), 155 174.
    • Woolf, D. K. 2005. Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus. B. 57, 87 94.
    • Woolf, D. K., Leifer, I. S., Nightingale, P. D., Rhee, T. S., Bowyer, P. and co-authors. 2007. Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J. Mar. Syst. 66(1 4), 71 91.
    • Yi, L., Kogan, Y. L. and Mechem, D. B. 2008. An idealized modeling study of the effect of continental air mass aerosol parameters on marine stratocumulus. Atmos. Res. 88(2), 157 167.
    • Young, S. A. 2006. The Cape Grim MiniLidar data set 1998 2000: data Coverage, File Format and Reading Software. CSIRO Marine and Atmospheric Research, Aspendale (Australia).
    • Young, S. A. 2007. Interpretation of the MiniLidar data recorded at Cape Grim 1998 2000. In: Baseline Atmospheric Program (Australia) 2005 2006 (eds. J. M. Cainey, N. Derek and P. B. Krummel). Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research, Melbourne, pp. 15 24.
    • Zhuo, W., Guo, Q., Chen, B. and Cheng, G. 2008. Estimating the amount and distribution of radon flux density from the soil surface in China. J. Environ. Radioact. 99, 1143 1148.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article