Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wåhlström, Iréne; Meier, H. E. Markus (2014)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Arctic Ocean, Meteorology. Climatology, QC851-999, Laptev Sea, carbon, methane, Arctic Ocean; Laptev Sea; methane; carbon; sea-air exchange; modeling, modelling, sea–air exchange
The ocean's sinks and sources determine the concentration of methane in the water column and by that regulating the emission of methane to the atmosphere. In this study, we investigate how sensitive the sea–air exchange of methane is to increasing/decreasing sinks and sources as well as changes of different drivers with a time-dependent biogeochemical budget model for one of the shallow shelf sea in the Siberian Arctic, the Laptev Sea. The applied changes are: increased air temperature, river discharge, wind, atmospheric methane, concentration of nutrients in the river runoff or flux of methane from the sediment. Furthermore, simulations are performed to examine how the large range in observations for methane concentration in the Lena River as well as the rate of oxidation affects the net sea–air exchange. In addition, a simulation with five of these changes applied together was carried out to simulate expected climate change at the end of this century. The result indicates that none of the simulations changed the seawater to becoming a net sink for atmospheric methane and all simulations except three increased the outgassing to the atmosphere. The three exceptions were: doubling the atmospheric methane, decreasing the rivers’ concentration of methane and increasing the oxidation rate where the latter is one of the key mechanisms controlling emission of methane to the atmosphere.Keywords: Arctic Ocean, Laptev Sea, methane, carbon, sea–air exchange, modelling(Published: 13 October 2014)Citation: Tellus B 2014, 66, 24174, http://dx.doi.org/10.3402/tellusb.v66.24174
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ACIA. 2005. Arctic Climate Impact Assessment. Cambridge University Press, New York, 1042 pp.
    • Anderson, L. G., Jutterstrom, S., Hjalmarsson, S., Wahlstrom, I. and Semiletov, I. P. 2009. Out-gassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition. Geophys. Res. Lett. 36, 6.
    • Arrigo, K. R., van Dijken, G. and Pabi, S. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603.
    • Bates, T. S., Kelly, K. C., Johnson, J. E. and Gammon, R. H. 1996. A reevaluation of the open ocean source of methane to the atmosphere. J. Geophys. Res. Atmos. 101, 6953 6961.
    • Bauch, D., Torres-Valdes, S., Polyakov, I., Novikhin, A., Dmitrenko, I. and co-authors, 2013. Halocline water modification and along slope advection at the Laptev Sea continental margin. Ocean Sci. 10, 1581 1617.
    • Bussmann, I. 2013. Distribution of methane in the Lena Delta and Buor-Khaya Bay, Russia. Biogeosciences. 10, 4641 4652.
    • Cramer, B. and Franke, D. 2005. Indications for an active petroleum system in the Laptev Sea, NE Siberia. J. Petrol. Geol. 28, 369 383.
    • Damm, E., Helmke, E., Thoms, S., Schauer, U., Nothig, E. and co-authors. 2010. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences. 7, 1099 1108.
    • Damm, E., Kiene, R. P., Schwarz, J., Falck, E. and Dieckmann, G. 2008. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Mar. Chem. 109, 45 59.
    • Damm, E., Mackensen, A., Budeus, G., Faber, E. and Hanfland, C. 2005. Pathways of methane in seawater: plume spreading in an Arctic shelf environment (SW-Spitsbergen). Continent. Shelf. Res. 25, 1453 1472.
    • de Angelis, M. A. and Scranton, M. I. 1993. Fate of methane in the Hudson river and estuary. Global. Biogeochem. Cycles. 7, 509 523.
    • Dlugokencky, E. J., Lang, P. M., Crotwell, A. M. and Masarie, K. A. 2012. Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983 2011. Version: 2012-09-24, ESRL Carbon Cycle, Boulder, CO.
    • Dmitrenko, I. A., Kirillov, S. A. and Tremblay, L. B. 2008. The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: implication for climatic change. J. Geophys. Res. Oceans. 113, C03007.
    • Dmitrenko, I. A., Kirillov, S. A., Tremblay, L. B., Bauch, D., Holemann, J. A. and co-authors. 2010. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. 115, 17.
    • Dmitrenko, I. A., Kirillov, S. A., Tremblay, L. B., Kassens, H., Anisimov, O. A. and co-authors. 2011. Recent changes in shelf hydrography in the Siberian Arctic: potential for subsea permafrost instability. J. Geophys. Res. Oceans. 116, C10027.
    • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and co-authors. 2007. Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-authors). Cambridge University Press, Cambridge, United Kingdom, pp. 129 234.
    • Frey, K. E. and McClelland, J. W. 2009. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrolog. Process. 23, 169 182.
    • Frey, K. E., McClelland, J. W., Holmes, R. M. and Smith, L. C. 2007. Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J. Geophys. Res. Oceans. Biogeosciences. 112, 10.
    • Gordeev, V. V. and Sidorov, I. S. 1993. Concentrations of major elements and their outflow into the Laptev Sea by the Lena River. Mar. Chem. 43, 33 45.
    • Guay, C. K. H., Falkner, K. K., Muench, R. D., Mensch, M., Frank, M. and co-authors. 2001. Wind-driven transport pathways for Eurasian Arctic river discharge. J. Geophys. Res. Oceans. 106, 11469 11480.
    • Holmes, M. L. and Creager, J. S. 1974. Holocene history of the Laptev Sea continental shelf. In: Marine Geology and Oceanography of the Arctic Seas (ed. Y. Herman). Springer-Verlag, New York, pp. 211 229.
    • IPCC. 2013. Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, and co-authors). Cambridge University Press, Cambridge, United Kingdom, 1535 pp.
    • Ja¨ hne, B., Heinz, G. and Dietrich, W. 1987. Measurement of the diffusion-coefficients of sparingly soluble gases in water. J. Geophys. Res. Oceans. 92, 10767 10776.
    • Jakobsson, M. 2002. Hypsometry and volume of the Arctic Ocean and its constituent seas. Geochem. Geophys. Geosys. 3. DOI: 10.1029/2001GC000302.
    • Judd, A., Davies, G., Wilson, J., Holmes, R., Baron, G. and co-authors. 1997. Contributions to atmospheric methane by natural seepages on the UK continental shelf. Mar. Geol. 138, 165 189.
    • Judd, A. G., Hovland, M., Dimitrov, L. I., Garcia-Gil, S. and Jukes, V. 2002. The geological methane budget at Continental Margins and its influence on climate change. Geofluids. 2, 109 126.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437 471.
    • Kamat, S. S., Williams, H. J., Dangott, L. J., Chakrabarti, M. and Raushel, F. M. 2013. The catalytic mechanism for aerobic formation of methane by bacteria. Nature. 497, 132 136.
    • Kantha, L. H. 2004. A general ecosystem model for applications to primary productivity and carbon cycle studies in the global oceans. Ocean Model. 6, 285 334.
    • Karl, D. M., Beversdorf, L., Bjorkman, K. M., Church, M. J., Martinez, A. and co-authors. 2008. Aerobic production of methane in the sea. Nat. Geosci. 1, 473 478.
    • Karl, D. M. and Tilbrook, B. D. 1994. Production and transport of methane in oceanic particulate organic-matter. Nature. 368, 732 734.
    • Kitidis, V., Upstill-Goddard, R. C. and Anderson, L. G. 2010. Methane and nitrous oxide in surface water along the NorthWest Passage, Arctic Ocean. Mar. Chem. 121, 80 86.
    • Kvenvolden, K. A., Ginsburg, G. D. and Soloviev, V. A. 1993a. Worldwide distribution of subaquatic gas hydrates. Geo Mar. Lett. 13, 32 40.
    • Kvenvolden, K. A., Lilley, M. D., Lorenson, T. D., Barnes, P. W. and Mclaughlin, E. 1993b. The Beaufort Sea Continental-Shelf as a seasonal source of atmospheric methane. Geophys. Res. Lett. 20, 2459 2462.
    • Lammers, R. B., Shiklomanov, A. I., Vorosmarty, C. J., Fekete, B. M. and Peterson, B. J. 2001. Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res. Atmos. 106, 3321 3334. hydrate stability zone on the shelf of East Siberian Seas. GeoMar. Lett. 25, 167 182.
    • Semiletov, I. P. 1999. Aquatic sources and sinks of CO(2) and CH(4) in the polar regions. J. Atmos. Sci. 56, 286 306.
    • Semiletov, I. P., Pipko, I. I., Shakhova, N. E., Dudarev, O. V., Pugach, S. P. and co-authors. 2011. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences. 8, 2407 2426.
    • Semiletov, I. P., Shakhova, N. E., Sergienko, V. I., Pipko, I. I. and Dudarev, O. V. 2012. On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system. Environ. Res. Lett. 7, 015201.
    • Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M. and co-authors. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change. 46, 159 207.
    • Shakhova, N. and Semiletov, I. 2007. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 66, 227 243.
    • Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P. and co-authors. 2010b. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Oceans. 115, C08007.
    • Shakhova, N., Semiletov, I., Leifer, I., Sergienko, V., Salyuk, A. and co-authors. 2014. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat Geosci. 7, 64 70.
    • Shakhova, N., Semiletov, I. and Panteleev, G. 2005. The distribution of methane on the Siberian Arctic shelves: implications for the marine methane cycle. Geophys. Res. Lett. 32, L09601.
    • Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D. and co-authors. 2010a. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science. 327, 1246 1250.
    • Shakhova, N. E., Semiletov, I. P. and Bel'cheva, N. N. 2007. The great Siberian rivers as a source of methane on the Russian Arctic shelf. Doklady Earth Sci. 415, 734 736.
    • Shakhova, N. E., Sergienko, V. I. and Semiletov, I. P. 2009. The contribution of the East Siberian shelf to the modern methane cycle. Her. Russ. Acad. Sci. 79, 237 246.
    • Shaltout, M. and Omstedt, A. 2012. Calculating the water and heat balances of the Eastern Mediterranean Basin using ocean modelling and available meteorological, hydrological and ocean data. Oceanologia. 54, 199 232.
    • Spreen, G., Kwok, R. and Menemenlis, D. 2011. Trends in Arctic sea ice drift and role of wind forcing: 1992 2009. Geophys. Res. Lett. 38, L19501.
    • Wanninkhof, R. 1992. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. Oceans. 97, 7373 7382.
    • Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. and McGillis, W. R. 2009. Advances in quantifying air-sea gas exchange and environmental forcing. Ann Rev Mar Sci. 1, 213 244.
    • W a˚hlstro¨ m, I., Omstedt, A., Bjork, G. and Anderson, L. G. 2012. Modelling the CO2 dynamics in the Laptev Sea, Arctic Ocean: part I. J. Mar. Syst. 102, 29 38.
    • W a˚hlstro¨ m, I., Omstedt, A., Bjork, G. and Anderson, L. G. 2013. Modeling the CO2 dynamics in the Laptev Sea, Arctic Ocean: part II. Sensitivity of fluxes to changes in the forcing. J. Mar. Syst. 111, 1 10.
    • Ward, B. B. and Kilpatrick, K. A. 1990. Relationship between substrate concentration and oxidation of ammonium and methane in a stratified water column. Continent. Shelf. Res. 10, 1193 1208.
    • Yusupov, V. I., Salyuk, A. N., Karnaukh, V. N., Semiletov, I. P. and Shakhova, N. E. 2010. Detection of methane ebullition in shelf waters of the Laptev Sea in the Eastern Arctic Region. Doklady Earth Sci. 430, 261 264.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article