LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
PUESCHEL, R. F.; MENDONCA, B. G. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Sources and advection of atmospheric particulate matter on the Island of Hawaii were assessed to properly evaluate the benchmark qualities of the air at the Mauna Loa Geophysical Observatory. A manually operated Gardner counter, a continually recording Aitken counter and a nephelometer were used to measure diurnal and long term trends of concentrations and light scattering coefficients of atmospheric particulate. Significant sources of aerosol particles result from combustion activities on the island, both man-made and volcanic. Volcanic effluent can penetrate the tradewind inversion when conditions are right and show up on long term Aitken counts at the Mauna Loa Observatory. The relative contribution of marine aerosols to the total particle population in the air masses over the island is small. The difference in concentration and the light scattering coefficient of particles in the air masses above and below the tradewind inversion are in the order of one magnitude or more.DOI: 10.1111/j.2153-3490.1972.tb01541.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Cadle, R. D., Wartburg, E. R. & Frank, E. R. 1967. Koschmieder, H. 1924. Theorie der horizontalen Particles in volcanic fume. Nature 213, 581-82. Sichtweite. Beitr. Phys. Freie Atm. 12, 33.
    • Charlson, R. J., Horvath, H. & Pueschel, R. F. Langer, G., Garcia, C., Pueschel, R . F. & Mendonca, 1967. The direct measurement of light scattering B. G. 1971. In preparation. coefficientfor studies of visibility and air pollu- Mendonca, B. G. 1969. Local wind circulation on tion. Atm. Env. 1 , 469. the slopes of Mauna Loa. J. Appl. Meteor. 8, Charlson, R. J., Ahlquist, N. C. & Horvath, H. 1968. 533-541. On the generality of correlation of atmospheric Moore, D. J. & Mason, B. J. 1954. The concentraaerosol mass concentration and light scatter. tion, size distribution and production rate of Atm. Env. 2, 455-464. large salt nuclei over the oceans. Qwzrt. J. Roy.
    • Ellis, H . T. & Pueschel, R. F. 1971. Solar radiation: Met. SOC.80, 583-590.
    • HoSAbrcebviteswanetencheec,neR17oa.2ftamna(od3irs9Np8ph5Ooe)Hl,rliu8,cK4ti5ol.i-ng8E4h.t6tr1.es9cn6ad9ts.teTarhitneMgrecaloauetnifaofincLsiheoniap.t Ors4ri7,z2Ce-.4,a8Hn2.durdr,eFla.tiKve. &hCumoribdeittyt,.WJ..J.C1o9ll5.8.SAcie.ro1so3l, and visibility. Atm. Env. 3, 543-552. Peterson, J. T. & Bryson, R. A. 1968. Atmospheric Junge, C. 1952a. Gesetzmiissigkeiten in der Grossen- aerosols: Increased concentrations during the verteilung atmosphiirischer Aerosole uber dem last decade. Science 162, 120-121. Kontinent Beri deut. Wetterdienstes U S - Zone Woodcock, A. H. 1953. Hawaii as a cloud physics 35, 261-277. laboratory. Pacific Science 7 , 522-524.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from