Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Naegler, Tobias; Ciais, Philippe; Orr, James C.; Aumont, Olivier; Rödenbeck, Christian (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We used observed and simulated atmospheric potential oxygen (APO) to evaluate simulated air-sea flux fields from 11 ocean global carbon cycle models. APO is defined in terms of atmospheric CO2, O2 and N2 so as not to depend on terrestrial photosynthesis and respiration. Hence, it is in principal suited to evaluate simulated air-sea fluxes of these gases. We forced two different atmospheric transport models, TM2 and TM3, with simulated air-sea fluxes from each of the 11 ocean models, and we compared resulting simulated latitudinal and seasonal variations in APO with observations. Differences between the two atmospheric transport models, which offer a first estimate of uncertainty due to atmospheric transport, are similar in magnitude to the average model-data differences and to the spread between the ocean models. Simulated annual mean meridional APO profiles qualitatively resemble the observations, although at individual stations there remain substantial differences between models and observations. The simulated amplitude of the seasonal APO variability was generally less than observed. We conclude that it is difficult to validate ocean models based on APO because shortcomings in atmospheric transport models and problems with data representativity cannot be distinguished from ocean model deficiencies.DOI: 10.1111/j.1600-0889.2006.00197.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, L. A. and Sarmiento, J. L. 1994. Redfield ratios of remineralization determined by nutrient data analysis. Global Biogeoch. Cycl. 8, 65-80.
    • Anderson, L. A. and Sarmiento, J. L. 1995. Global ocean phosphate and oxygen simulations. Global Biogeoch. Cycl. 9, 621-636.
    • Andres, R. J., Marland, G., Fung, I. and Matthews, E. 1996. A 1 × 1 distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950-1990. Global Biogeoch. Cycl. 10(3), 419-429.
    • Aumont, O. 1998. Etude du cycle naturel du carbone dans un mode`le 3D de l'oce´an mondial. PhD thesis, Univ. Paris VI, Paris. June.
    • Aumont, O., Orr, J. C., Monfray, P., Madec, G. and Maier-Reimer, E. 1999. Nutrient trapping in the equatorial Pacific: The ocean circulation solution. Global Biogeoch. Cycl. 13(2), 351-369.
    • Balkanski, Y., Monfray, P., Battle, M. and Heimann, M. 1999. Ocean primary production derived from satellite data: an evaluation with atmospheric oxygen measurements. Global Biogeoch. Cycl. 13, 257- 271.
    • Battle, M., Fletcher, S. M., Bender, M., Keeling, R. F., Manning, A. C., and co-authors. 2006. Atmospheric potential oxygen: new observations and their implications for some atmospheric and oceanic models. Global Biogeoch. Cycl. 20 (GB1010), doi:10.1029/2005GB002534.
    • Bousquet, P. 1997. Optimisation des flux nets de CO2: assimilation des mesures atmosphe´riques de CO2 et de13CO2 dans un mode`le de transport tridimensionnel. Phd thesis, Universite´ Paris VI, Paris.
    • Boutin, J. and Etcheto, J. 1996. Consistency of Geosat, SSM/I and ERS1 global surface wind speeds; comparison with in-situ data. J. Atmos. Oceanic Technol. 13, 183-197.
    • Ciais, P., Tans, P. P., Trolier, M., White, J. W. and Francey, R. 1995. A large Northern Hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science 269, 1098-1102.
    • Denning, A. S., Fung, I. Y. and Randall, D. A. 1995. Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376, 240-243.
    • Doney, S. and Hecht, M. 2002. Antarctic bottom water formation and deep water chlorofluorocarbon distributions in a global ocean climate model. J. Phys. Oceanogr. 32(6), 1642-1666.
    • Duffy, P. B., Caldeira, K., Selvaggi, J. and Hoffert, M. I. 1997. Effects of subgrid-scale mixing parameterizations on simulated distribution of natural 14C, temperature and salinity in a three-dimensional ocean general circulation model. J. Phys. Oceanogr. 27(4), 498-523.
    • Garcia, H. and Keeling, R. 2001. On the global oxygen anomaly and air-sea flux. J. Geophys. Res. 106(C12), 31 155-31 167.
    • GlobalView, 2003. Cooperative Atmospheric Data Integration ProjectCarbon Dioxide. Technical report, NOAA CMDL, Boulder, CO, USA, 2003. available via anonymous FTP: ftp.cmdl.noaa.gov, path: ccg/CO2/GLOBALVIEW.
    • Gnanadesikan, A., Slater, R. D., Gruber, N. and Sarmiento, J. L. 2002. Oceanic vertical exchange and new production: a comparison between models and data. Deep-Sea Research II 2, 363-401.
    • Goodberlet, M. A., Swift, C. T. and Wilkerson, J. C. 1989. Remote sensing of ocean surface winds with the special sensor microwave/Imager. J. Geophys. Res. 94, 14 571-15 555.
    • Goosse, H., Deleersnijder, E., Fichefet, T. and England, M. H. 1998. Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res. 104(C6), 13 681-13 695.
    • Gordon, C. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn. 16, 147-168.
    • Gruber, N., Gloor, E., Fan, S.-M. and Sarmiento, J. L. 2001. Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Global Biogeoch. Cycl. 15(4), 783-803.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626-630.
    • Heimann, M. 1995. The global atmospheric tracer model TM2. Technical Report 10 (ISSN 0940-9327), Deutsches Klimarechenzentrum, Hamburg.
    • Heimann, M. and Ko¨rner, S. 2003. The global atmospheric tracer model TM3. Technical report No 5, Max-Planck-Institut fu¨r Biogeochemie, Jena, Germany.
    • Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D. W., and co-authors. 1998. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Global Biogeoch. Cycl. 12(1), 1-24.
    • Keeling, R. F. 1988. Development of an interferometric oxygen analyzer for precise measurements of the atmospheric O2 mole fraction. Phd thesis, Harvard University.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723-727.
    • Keeling, R. F., Najjar, R. P., Bender, M. L. and Tans, P. P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeoch. Cycl. 7(1), 37-67.
    • Keeling, R. F., Stephens, B. B., Najjar, R. G., Doney, S. C., Archer, D. and co-authors. 1998. Seasonal variations in the atmospheric O2/N2 ratio in relation to the kinetics of air-sea gas exchange. Global Biogeoch. Cycl. 12, 141-163.
    • Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Piper, S. C., and co-authors. 1996. Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Global Biogeoch. Cycl. 10, 783-796.
    • Le Que´re´, C., Orr, J. C., Monfray, P., Aumont, O. and Madec, G. 2000. Interannual variability of the oceanic sink of CO2 from 1979 to 1997. Global Biogeoch. Cycl. 14(4), 1247-1265.
    • Louanchi, F. and Najjar, R. G. 2000. A global monthly climatology of phosphate, nitrate and silicate in the upper ocean: spring-summer export production and shallow remineralization. Global Biogeoch. Cycl. 14, 957-977.
    • Louis, J. F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorology 17, 187-202.
    • Madec, G., Delecluse, P., Imbard, M. and Le´vy, C. 1998. OPA Version 8.1-Ocean General Circulation model. Reference manual, IPSL, Paris, France.
    • Maier-Reimer, E., Mikolajewicz, U. and Hasselmann, K. 1993. Mean circulation of the Hamburg LSG OGCM and its sensitivity on the thermohaline forcing. J. Phys. Oceanogr. 23, 731-757.
    • Manning, A. C. 2001. Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: tools for studying the global carbon cycle. Phd thesis, University of California, San Diego.
    • Marland, G., Boden, T. A. and Andres, R. J. 2005. Global, regional and national CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge, TN.
    • Matear, R. J. and Hirst, A. C. 1999. Climate Change Feedback on the Future Oceanic CO2 uptake. Tellus, 51B, 722-733.
    • Najjar, R. and Orr, J. C. 1999. Biotic-HOWTO. Internal OCMIP Report. LSCE/CEA Saclay, Gif-sur-Yvette, France, 15 pp.
    • Najjar, R. G., Sarmiento, J. L. and Toggweiler, J. R. 1992. Downward transport and fate of organic matter in the ocean: simulations with a general circulation model. Global Biogeoch. Cycl. 6(1), 45- 76.
    • Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L. and co-authors. 2001. Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeoch. Cycl. 15, 43-59.
    • Ramonet, M., Roully, J. C., Bousquet, P. and Monfray, P. 1996. Radon222 measurements during the TROPOZ II campaign and comparison with a global atmospheric transport model. J. Atmos. Chem. 23, 107- 136.
    • Rayner, P. J. and Law, R. M. 1995. A comparison of modelled responses to prescribed CO2 sources. Tech. Paper 88, CSIRO Div. of Atmos. Res., Melbourne.
    • Russel, G. L. and Lerner, J. A. 1981. A new finite-differencing scheme for the tracer transport equation. J. Appl. Meteor. 20, 1483-1498.
    • Schlitzer, R. 2000. Applying the adjoint method for global biogeochemical modeling. In: Inverse Methods in Global Biogeochemical Cycles (eds. Kasibhatla, P. Heimann, M. Hartley, D. Mahowald, N. Prinn R., and RaynerP.), Geophys. Monograph Series Vol. 114, Washington, DC, AGU.
    • Seibt, U., Brand, W. A., Heimann, M., Lloyd, J., Severinghaus, J. P. and co-authors. 2004. Observations of O2:CO2 exchange ratios during ecosystem gas exchange. Global Biogeoch. Cycl. 18(GB4024), doi:2004GB002242.
    • Severinghaus, J. P. 1995. Studies of the terrestrial O2 and carbon cycles in sand dune gases and in Biosphere 2. PhD thesis, Columbia Univ.
    • Six, K. D. and Maier-Reimer, E. 1996. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Global Biogeoch. Cycl. 10, 559-583.
    • Stephens, B. B. 1999. Field-based atmospheric oxygen measurements and the ocean carbon cycle. Phd thesis, Univ. of California, San Diego.
    • Stephens, B. B., Keeling, R. F., Heimann, M., Six, K. D., Murnane, R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Global Biogeoch. Cycl. 12, 213-230.
    • Stocker, T. F., Wright, D. G. and Mysak, L. A. 1992. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Climate 5, 773-797.
    • Takahashi, T., Broecker, W. S. and Langer, S. 1985. Redfield ratio based on chemical data from isopycnal surfaces. J. Geophys. Res. 90, 6907- 6924.
    • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2 and seasonal biological and temperature effects. Deep-Sea Research II 49, 1601-1622.
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431-1438.
    • Thoning, K. W., Tans, P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory, 2, Analysis of the NOAA/GMCC data, 1974-1985. J. Geophys. Res. 94(D6), 8549-8565.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 117, 1779-1800.
    • Toggweiler, J. R. and Samuels, B. 1993. New radiocarbon constraints on the upwelling of abyssal water to the ocean's surface. In: The global carbon cycle (ed. Heimann M.), pp. 333-366. Springer-Verlag, Berlin, Heidelberg.
    • Tohjima, Y., Mukai, H., Machida, T., Nojiri, Y. and Gloor, M. 2005. First measurements of the latitudinal atmospheric O2 and CO2 distributions across the western Pacific. Geophy. Res. Let. 32, doi:10.1029/2005GL023311.
    • Walsh, J. 1978. A data set on Northern Hemisphere sea ice extent, 1953- 1976. Glaciological data, World Data Cent. A for Glaciol. [Snow and Ice], Boulder, Colorado. Report GD-2.
    • Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97(C5), 7373-7382.
    • Weiss, R. F. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. 17, 721-735.
    • Yamanaka, Y. and Tajika, E. 1996. The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeoch. Cycl. 10(2), 361-382.
    • Zwally, H. J., Comiso, J., Parkinson, C., Campbell, W., Carsey, F. and co-authors. 1983. Antarctic sea ice, 1973-1976: Satellite passive microwave observations. NASA.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Collected from