LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Protonotariou, Anna P.; Tombrou, Maria; Giannakopoulos, Christos; Kostopoulou, Effie; Le Sager, Philippe (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Carbon monoxide (CO) is studied over Europe for 2001 using measurements from 31 rural-background stations and the nested-grid application of the global CTM GEOS-CHEM. The model reveals lowest (highest) biases in warm (cold) periods, tracking observations in most cases more closely than the global model. The role of CO production and destruction processes and the atmospheric conditions are investigated. A rotated Principal Component Analysis is applied to all stations, based on daily CO modelled concentrations in 2001, yielding three principal components (PCs) with stations of common characteristics. CO concentrations are studied for these groups in relation to the circulation patterns prevailing over Europe in 2001, at mean sea level and 850 hPa. The nested-grid model improves results in comparison to those calculated by the global model by up to ∼22% for first principal component subregion, where emissions are high and elevation is low. Improvement reaches ∼17 and ∼7%, respectively, for second and third principal component subregions, where emissions are lower and altitudes are higher. Better performance is achieved for patterns associated with westerly flow, whereas poor skills are revealed during stagnant conditions. During pollution events, the nesting model's ability in capturing CO surface concentrations improves by up to ∼40% in comparison to the global simulation.DOI: 10.1111/j.1600-0889.2010.00462.x

Share - Bookmark

Cite this article

Collected from