Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Radu, Raluca; Déqué, Michel; Somot, Samuel (2008)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
Spectral nudging, a dynamic downscaling method, has been used as a suitable approach to force a regional model to adopt prescribed large-scales over the entire domain, not just at the lateral boundaries, while developing realistic detailed regional features consistent with the large-scales. The aim of this study is to compare a global spectral climate model at high resolution (50 km) and a driven spectral regional climate model over Europe by using the so-called perfect model approach. The spectral nudging method is applied in order to achieve a better representation of large-scale climate over a limited domain. The results show that the regional model driven only at its lateral boundaries presents a summer warm bias in the middle of the domain. This bias disappears when spectral nudging is applied. On the other hand, the smallest scales which are not driven by the spectral nudging are not significantly affected by scale interaction. The only detrimental impact of spectral nudging is a slight precipitation increase in the upper quantiles of precipitation, which can be resolved by large-scale nudging of specific humidity.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anthes, R. A. 1983. Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev. 111, 1306-1335.
    • Antic, S., Laprise, R., Denis, D. and de El´ıa, R. 2004. Testing the downscaling ability of a one-way nested regional climate modeling regions of complex topography. Clim. Dyn 23, 473-493.
    • Barring, L. and Laprise, R. 2005. High-resolution climate modelling: Assesment, added value and applications. In: Extendend abstracts of a WMO/WCRP-sponsored regional scale climate modelling Workshop Lund (Sweden), 29 March-2 April 2004, Lund University electronic reports in physical geography 132 pp.
    • Biner, S., Caya, D., Laprise, R. and Spacek, L. 2000. Nesting of RCM by imposing large scales. WMO/TD No. 987 30, 7.3-7.4.
    • Bougeault, P. 1985 A simple parameterization of the large-scale effects of cumulus convection. Mon. Wea. Rev. 113, 2108-2121.
    • Bubnova, R., Hora´nyi, A. and Malardel, S. 1993. International project ARPEGE/ALADIN. EWGLAM Newslett. 22, 117-130.
    • Castro, C. L., Pielke, R. A. Sr. and Leoncini, G. 2005. Dynamical downscaling: an assessment of value added using regional climate model. J. Geophys. Res.-Atmos. 110, D05108, doi:10.1029/2004JD004721.
    • Cocke, S. and LaRow, T. E. 2000. Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Mon. Wea. Rev. 128, 689-708.
    • Davies, H. C. 1976. A lateral boundary formulation for multi-level prediction models. Quart. J. Roy. Meteor. Soc. 102, 405-418.
    • de El´ıa, R., Laprise, R. and Denis, B. 2002. Forecasting skill limits of nested, limited area models: a perfect model approach. Mon. Wea. Rew. 130, 2006-2023.
    • Denis, B., Coˆte´, J. and Laprise, R. 2002a. Spectral decomposition of two-dimensional atmospheric fields on limited-area domains using the discrete cosine transform (DCT). Mon. Wea. Rew 130, 1812- 1829.
    • Denis, B., Laprise, R., Caya, D. and Coˆte´, J. 2002b. Downscaling ability of one-way nested regional climate models: the Big-Brother Experiment. Clim. Dyn. 18, 627-646.
    • Denis, B., Laprise, R. and Caya, D. 2003. Sensitivity of a regional climate model to the spatial resolution and temporal updating frequency of the lateral boundary conditions. Clim. Dyn. 20, 107-126.
    • De´que´, M., Dreveton, C., Braun, A. and Cariolle, D. 1994. The ARPEGE-IFS atmosphere model: a contribution to the French community climate modelling. Clim. Dyn. 10, 249-266.
    • Dickinson, M., Errico, R. M., Giorgi, F. and Bates, G. T. 1989. A regional climate model for the western United States. Clim. Change 15, 383- 422.
    • Dimitrijevic, M. and Laprise, R. 2005. Validation of the nesting technique in a regional climate model and sensitivity tests to the resolution of the lateral boundary conditions during summer. Clim. Dyn. 25, 555-580.
    • Feser, F. and von Storch, H. 2006. A spatial two-dimensional discrete filter for limited area model evaluation purposes. Mon. Wea. Rev. 133, 1774-1786.
    • Fouquart, Y. 1987. Radiative transfer in climate modeling. In: NATO Advanced Study Institute on Physically-Based Modeling and Simlation of Climate and Climatic Changes. Erice, 11-23 May 1986. (ed. M. E. Schlesinger, 223-283).
    • Frei, C., Christensen, J. H., De´que´, M., Jacob, D., Jones, R. G. and Vidale, P. L. 2003. Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J. Geophys. Res. 108, ACL 91-19.
    • Giorgi, F. 1990. Simulation of regional climate using a limited area model nested in general circulation model. J. Climate 3, 941-963.
    • Giorgi, F. and Bates, G. T. 1989. On the climatological skill of a regional model over complex terrain. Mon. Wea. Rev. 117, 2325- 2347.
    • Herceg, D., Sobel, A. H., Sun, L. and Zebiak, S. E. 2006. The Big Brother experiment and seasonal predictability in the NCEP regional spectral model. Clim. Dyn. 27, 69-82.
    • Haugen, J. E. and Machenhauer, B. 1993. A spectral limited-area model formulation with time dependent boundary conditions applied to the shallow-water equations. Mon. Wea. Rev. 121, 2618-2630.
    • Hewitt, C. D. and Griggs, D. J. 2004. Ensembles-based predictions of climate changes and their impacts. EOS 85, 566.
    • IPCC, 2007. Climate Change 2007: the Physical Science Basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis and co-editors), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Jones, R. G., Murphy, J. M. and Noguer, M. 1995. Simulation of climate change over Europe using a nested regional-climate model. Part I: assesment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc. 121, 1413-1449.
    • Juang, H.-M. H. and Kanamitsu, M. 1994. The NMC regional spectral model. Mon. Wea. Rev. 122, 3-26.
    • Juang, S.-Y. H. and Kanamitsu, M. 1997. The NCEP regional spectral model: an update. Bull. Amer. Meteor. Soc. 78, 2125-2143.
    • Kida, H., Koide, T., Sasaki, H. and Chiba, M. 1991. A new approach to coupling a limited area model with a GCM for regional climate simulation. J. Meteor. Soc. Japan 69, 723-728.
    • Laprise, R. 2003. Resolved scales and nonlinear interactions in limitedarea models. J. Atmos. Sci. 60, 768-779.
    • Machenhauer, B. and Haugen, J.-E. 1987. Test of a spectral limited area shallow water model with time dependent lateral boundary conditions and combined normal mode/semi-Lagrangean time integration schemes. In: ECMWF Workshop Proceedings: Techniques for Horizontal Discretization in Numerical Weather Prediction Models ECMWF 361-371.
    • Marbaix, P., Galle, H., Brasseur, O. and van Ypersele, J.-P. 2003. Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon. Wea. Rev. 131, 461-479.
    • McDonald, A. 1999. A review of lateral boundary conditions for limited area forecast models. Proc. Ind. Natl. Sci. Acad. 65, 91-105.
    • McGregor, J. L., Katzfey, J. J. and Nguyen, K. C. 1998. Fine resolution simulations of climate change for southeast Asia. South-east Asian Regional Committee for START Research project Final Report 51pp. Available from CISRO Atmospheric Research, PMB1, Aspendale, VIC 3195, Australia.
    • Miguez-Macho, G., Stenchikov, G. L. and Robock, A. 2004. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res. 109, D13104, doi:10.1029/2003JD004495.
    • Miyakoda, K. and Rosati, A. 1977. One way nested grid: the interface conditions and the numerical accuracy. Mon. Wea. Rev. 105, 1092- 1107.
    • Morcrette, J. J. 1990. Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon. Wea. Rev 118, 847-873.
    • Orszag, S. A. 1970. Transform method for the calculation of vectorcoupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890-895.
    • Pan, Z., Segal, M., Turner, R. and Tackle, E. 1995. Model simulation of impacts of transient surface wetness on summer rainfall in the United States Midwest during drought and flood years. Mon. Wea. Rev. 123, 1575-1581.
    • Pal, J. S. and Eltahir, E. A. B. 2003. A feedback mechanism between soil-moisture distribution and storm tracks. Quart. J. Roy. Meteor. Soc. 129, 2279-2297.
    • Radnoti, G. and co-authors, 1995. The spectral limited area model ARPEGE/ALADIN. PWPR Report Series 7, WMO-TD 699, 111- 117.
    • Radnoti, G. 2001. An improved method to incorporate lateral boundary conditions in a spectral limited area model. ALADIN Newslett. 20 http://www.cnrm.meteo.fr/aladin/newsletters/newsletters. html Radu, R. 2003. Extensive study of the coupling problem for a high resolution limited area model. ALATNET Final Report http://www.cnrm.meteo.fr/alatnet/.
    • Ricard, J. L. and Royer, J. F. 1993. A statistical cloud scheme for use in AGCM. Ann. Geophys. 11, 1095-1115.
    • Rowell, D. P. and Jones, R. 2006. Causes and uncertainty of future summer drying over Europe. Clim. Dyn. 27, 281-299.
    • Salas y Me´lia, D., Chauvin, F., De´que´, M., Douville, H., Gue`re`my, J. F. and co-authors. 2005. Description and validation of CNRMCM3 global coupled climte model. Note de centre GMGEC, CNRM 103.
    • Sasaki, H., Kida, J., Koide, T. and Chiba, M. 1995. The performance of a long-term integrations of a limited area model wit the spectral boundary coupling method. J. Meteor. Soc. Japan 73, 165- 181.
    • Smith, R. N. B. 1990. A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc. 116, 435-460.
    • Staniforth, A. 1997. Regional modeling: a theoretical discussion. Meteor. Atmos. Phys. 63, 15-29.
    • von Storch, H., Langenberg, H. and Feser, F. 2000. A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev. 128, 3664-3673.
    • Waldron, K. M., Paegle, J. and Horel, J. D. 1996. Sensitivity of a spectrally filtered and nudged limited area model to outer model options. Mon. Wea. Rev. 124, 529-547.
    • Wang, Y., Leung, L.-R., McGregor, J. L., Lee, D.-K., Wang W.-C. and co-authors. 2004a. Regional climate modelling: progress, challenges and prospects. J. Meteor. Soc. Japan 82, 1599-1628.
    • Wang, Y., Xie, S.-P., Xu, H. and Wang, B. 2004b. Regional model simulations of boundary layer clouds over the Sotheast Pacific of South America. Part I: control experiment. Mon. Wea. Rev. 132, 274- 296.
    • Warner, T. T., Peterson, R. A. and Treadon, R. E. 1997. A tutorial on lateral conditions as a basical and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc. 78, 2599-2617.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from