LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Otto, Sebastian; Bierwirth, Eike; Weinzierl, Bernadett; Kandler, Konrad; Esselborn, Michael; Tesche, Matthias; Schladitz, Alexander; Wendisch, Manfred; Trautmann, Thomas (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Atmosphärische Spurenstoffe, Atmosphärenprozessoren

Classified by OpenAIRE into

arxiv: Astrophysics::Earth and Planetary Astrophysics
The solar optical properties of Saharan mineral dust observed during the Saharan Mineral Dust Experiment (SAMUM) were explored based on measured size-number distributions and chemical composition. The size-resolved complex refractive index of the dust was derived with real parts of 1.51�1.55 and imaginary parts of 0.0008�0.006 at 550 nm wavelength. At this spectral range a single scattering albedo ��o and an asymmetry parameter g of about 0.8 were derived. These values were largely determined by the presence of coarse particles. Backscatter coefficients and lidar ratios calculated with Mie theory (spherical particles) were not found to be in agreement with independently measured lidar data. Obviously the measured Saharan mineral dust particles were of non-spherical shape. With the help of these lidar and sun photometer measurements the particle shape as well as the spherical equivalence were estimated. It turned out that volume equivalent oblate spheroids with an effective axis ratio of 1:1.6 matched these data best. This aspect ratio was also confirmed by independent single particle analyses using a scanning electron microscope. In order to perform the non-spherical computations, a database of single particle optical properties was assembled for oblate and prolate spheroidal particles. These data were also the basis for simulating the non-sphericity effects on the dust optical properties: ��o is influenced by up to a magnitude of only 1% and g is diminished by up to 4% assuming volume equivalent oblate spheroids with an axis ratio of 1:1.6 instead of spheres. Changes in the extinction optical depth are within 3.5%. Non-spherical particles affect the downwelling radiative transfer close to the bottom of the atmosphere, however, they significantly enhance the backscattering towards the top of the atmosphere: Compared to Mie theory the particle non-sphericity leads to forced cooling of the Earth-atmosphere system in the solar spectral range for both dust over ocean and desert.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • d'Almeida, G. A., Koepke, P. and Shettle, E. P. 1991. Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak Publishing, Hampton, Virginia, USA, 561 pp.
    • Althausen, D., Mu¨ller, D., Ansmann, A., Wandinger, U., Hube, H. and co-authors. 2000. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. Technol. 17, 1469-1482.
    • Anderson, G. P., Clough, S. A., Kneiyzs, F. X., Chetwynd, J. H. and Shettle, E. P. 1986. AFGL Atmospheric constituent profiles (0-120 km). AFGL-TR-86-0110, AFGL (OPI), Hanscom AFB, MA 01736.
    • Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D. and co-authors. 2008. Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 61B, doi:10.1111/j.1600- 0889.2008.00384.x.
    • Arakawa, E. T., Tuminello, P. S., Khara, B. N., Millham, M. E., Authier, S. and co-authors. 1997. Measurement of optical properties of small particles. NASA Ames Research Center, pages Report Number: CONF9706222, DE98001913, ORNL CP95872.
    • Aronson, J. R., Emslie, A. G., Miseo, E. V., Smith, E. M. and Strong, P. F. 1983. Optical constants of monoclinic anisotropic crystals: gypsum. Appl. Opt. 22, 4093-4098.
    • Balkanski, Y., Schulz, M., Claquin, T. and Guibert, S. 2007. Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmos. Chem. Phys. 7, 81-95.
    • Bass, A. M. and Paur, R. J. 1981. UV absorption cross-sections for ozone: the temperature dependence. J. Photochem. 17, 141.
    • Bedidi, A. and Cervelle, B. 1993. Light scattering by spherical particles with hematite- and goethite-like optical properties. Effect of water impregnation. J. Geophys. Res. 98, 11 941-11 952.
    • Bierwirth, E., Wendisch, M., Ehrlich, A., Heese, B., Tesche, M. and coauthors. 2008. Spectral surface albedo over Morocco and its impact on the radiative forcing of Saharan dust. Tellus 61B, doi:10.1111/j.1600- 0889.2008.00395.x.
    • Bogumil, K., Orphal, J. and Burrows, J. P. 2000. Temperature dependent absorption cross sections of O3, NO2, and other atmospheric trace gases measured with the SCIAMACHY spectrometer. Proceedings of the ERS - Envisat - Symposium. Looking down at our Earth in the New Millennium, Goteburg, Sweden, 2000.
    • Burrows, J. P., Dehn, A., Deters, B., Himmelmann, S., Richter, A. and co-authors. 1998. Atmospheric remote-sensing reference data from GOME: 1. Temperature-dependent absorption cross sections of NO2 in the 231-794 nm range. J. Quant. Spectrosc. Radiat. Transfer 60, 1025-1031.
    • Burrows, J. P., Dehn, A., Deters, B., Himmelmann, S., Richter, A. and co-authors. 1999. Atmospheric remote-sensing reference data from GOME: 2. Temperature-dependent absorption cross sections of O3 in the 231-794 nm range. J. Quant. Spectrosc. Radiat. Transfer 61, 509-517.
    • Cantrell, C. A., Davidson, J. A., McDaniel, A. J., Shetter, R. E. and Calvert, J. G. 1990. Temperature-dependent formaldehyde cross sections in the near-ultraviolet spectral region. J. Phys. Chem. 94, 3902- 3908.
    • Carlson, T. N. and Benjamin, S. G. 1980. Radiative heating rates for Saharan dust. Am. Meteor. Soc. 37, 193-213.
    • Carlson, T. N. and Caverly, R. S. 1977. Radiative characteristics of Saharan dust at solar wavelengths. J. Geophys. Res. 82, 3141- 3152.
    • Cattrall, C., Carder, K. L. and Gordon, H. R. 2003. Columnar aerosol single-scattering albedo and phase function retrieved from sky radiance over the ocean: measurements of Saharan dust. J. Geophys. Res. 108(D9), 4287, doi:10.1029/2002JD002497.
    • Collins, D. R., Jonsson, H. H., Seinfeld, J. H., Flagan, R. C., Gasso´, S. and co-authors. 2000. In situ aerosol-size distributions and clearcolumn radiative closure during ACE-2. Tellus 52B, 498-525.
    • Collins, W. D., Lee-Taylor, J. M., Edwards, D. P. and Francis, G. L. 2006. Effects of increased near-infrared absorption by water vapor on the climate system. J. Geophys. Res. 111, D18109, doi:10.1029/2005JD006796.
    • Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J. and co-authors. 2002a. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590-608.
    • Dubovik, O., Holben, B. N., Lapyonok, T., Sinyuk, A., Mishchenko, M. I. and co-authors. 2002b. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 29(10), doi:10.1029/2001GL014506.
    • Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M. and co-authors. 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 111, D11208, doi:10.1029/2005JD006619.
    • Egan, W. G. and Hilgeman, T. W. 1979. Optical Properties of Inhomogeneous Materials: Applications to Geology, Astronomy, Chemistry, and Engineering. Academic Press, San Diego, California, 235 pp.
    • Esselborn, M., Wirth, M., Fix, A., Tesche, M. and Ehret, G. 2008a. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. Appl. Opt. 47(3), 346-358.
    • Esselborn, M., Wirth, M., Fix, A., Weinzierl, B., Rasp, K. and co-authors. 2008b. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus 61B, doi:10.1111/j.1600-0889.2008.00394.x.
    • Falkovich, A. H., Ganor, E., Levin, Z., Formenti, P. and Rudich, Y. 2001. Chemical and mineralogical analysis of individual mineral dust particles. J. Geophys. Res. 106(D16), 18 029-18 036.
    • Fleischmann, O. C., Hartmann, M., Burrows, J. P. and Orphal, J. 2004. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A: Chem. 168, 117-132.
    • Formenti, P., Andreae, M. O. and Lelieveld, J. 2000. Measurements of aerosol optical depth above 3570 m asl in the North Atlantic free troposphere: results from ACE-2. Tellus 52B, 678-693.
    • Fouquart, Y., Bonnel, B., Brogniez, G., Buriez, J. C., Smith, L. and coauthors. 1987. Observations of Saharan aerosols: Results of ECLATS field experiment, Part II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Clim. Appl. Met. 26, 38-52.
    • Freeman, D. E., Yoshino, K., Esmond, J. R. and Parkinson, W. H. 1984. High resolution absorption cross section measurements of SO2 at 213 K in the wavelength region 172-240 nm. Planet. Space. Sci. 32, 1125-1134.
    • Gillespie, J. B. and Lindberg, J. D. 1992. Ultraviolet and visible imaginary refractive index of strongly absorbing atmospheric particulate matter. Appl. Opt. 31, 2112-2115.
    • Glotch, T. D., Rossman, G. R. and Aharonson, O. 2007. Mid-infrared (5 - 100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus 192, doi:10.1016/j.icarus.2007.07.02, 605-622.
    • Grenfell, T. C. and Warren, S. G. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104(D24), 31 697-31 709.
    • Grenfell, T. C., Neshyba, S. P. and Warren, S. G. 2005. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates. J. Geophys. Res. 110, D17203, doi:10.1029/2005JD005811.
    • Haywood, J., Francis, P., Osborne, S., Glew, M., Loeb, N. and co-authors. 2003. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res. 108(D18), 8577, doi:10.1029/2002JD002687.
    • Heintzenberg, J. 2008. The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus 61B, doi:10.1111/j.1600- 0889.2008.00403.x.
    • Henning, T., Mutschke, H. and Dorschner, J. 1995. Optical properties of oxide dust grains. Astron. Astrophys. Suppl. Ser. 112, 143- 149.
    • Henning, T. and Mutschke, H. 1997. Low-temperature infrared properties of cosmic dust analogues. Astron. Astrophys. 327, 743- 754.
    • Hess, M., Koepke, P. and Schult, I. 1998. Optical Properties of Aerosols and clouds: the software package OPAC. Bull. Am. Met. Soc. 79(7), 831-844.
    • von Hoyningen-Huene, W. and Posse, P. 1997. Nonsphericity of aerosol particles and their contribution to radiative forcing. J. Quant. Spectrosc. Radiat. Transfer 57(5), 651-668.
    • Hsu, W. P. and Matijevic, E. 1985. Optical properties of monodispersed hematite hydrosols. Appl. Opt. 24, 1623-1629.
    • Ivlev, L. S. and Andreev, S. D. 1986. Optical properties of atmospheric aerosols. Gidrometeoizdat, Leningrad (in Russian).
    • Ivlev, L. S. and Popova, S. I. 1972. Optical constants of substances of atmospheric aerosols. Izv. Vys. Uch. Zav. Fiz. 5, 91-97.
    • Jacobson, M. Z. 2000. A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys. Res. Lett. 27(2), 217-220.
    • Jarzembski, M. A., Norman, M. L., Fuller, K. L., Srivastava, V. and Cutton, D. R. 2003. Complex refractive index of ammonium nitrate in the 2 - 20 μm spectral range. Appl. Opt. 42, 922-930.
    • Kahnert, M. and Kylling, A. 2004. Radiance and flux simulations for mineral dust aerosols: assessing the error due to using spherical or spheroidal model particles. J. Geophys. Res. 109, D09203, doi:10.1029/2003JD004318.
    • Kahnert, M. 2004. Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles. J. Quant. Spectrosc. Radiat. Transfer 85, 231-249.
    • Kahnert, M., Nousiainen, T. and Veihelmann, B. 2005. Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols. J. Geophys. Res. 110, D18S13, doi:10.1029/2004JD005558.
    • Kahnert, M., Nousiainen, T. and Ra¨isa¨nen, P. 2007. Mie simulations as an error source in mineral dust aerosol radiative forcing calculations. Q. J. R. Meteorol. Soc. 133, 299-307.
    • Kandler, K., Schu¨ tz, L., Deutscher, C., Ebert, M., Hofmann, H. and coauthors. 2008. Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, doi:10.1111/j.1600-0889.2008.00385.x.
    • Kaufman, Y. J., Tanre´, D., Dubovik, O., Karnieli, A. and Remer, L. A. 2001. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett. 28(8), 1479-1482.
    • Koven, C. D. and Fung, I. 2006. Inferring dust composition from wavelength-dependent absorption in Aerosol Robotic Network (AERONET) data. J. Geophys. Res. 111, D14205, doi:10.1029/2005JD006678.
    • Kromminga, H., Orphal, J., Spietz, P., Voigt, S. and Burrows, J. P. 2003. The temperature dependence (213-293 K) of the absorption crosssections of OClO in the 340-450 nm region measured by Fouriertransform spectroscopy. J. Photochem. Photobiol. A: Chem. 157, 149- 160.
    • Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S. and Gaudichet, A. 2006. Characterization of iron oxids in mineral dust aerosols: implications for light absorption. J. Geophys. Res. 111, D21207, doi:10.1029/2005JD007016.
    • Levin, Z., Joseph, J. H. and Mekler, Y. 1980. Properties of Sharav (Khamsin) dust-comparison of optical and direct sampling data. J. Atmos. Sci. 37, 882-891.
    • Lindberg, J. D. and Laude, L. S. 1974. Measurements of the absorption coefficient of atmospheric dust. Appl. Opt. 13, 1923-1927.
    • Lindberg, J. D. 1975. The composition and optical absorption coefficient of atmospheric particulate matter. Optic. Quant. Electron. 7, 131-139.
    • Lindberg, J. D. and Gillespie, J. B. 1977. Relationship between particle size and imaginary index in atmospheric dust. Appl. Opt. 16(10), 2628-2630.
    • Linke, C., Mo¨ hler, O., Veres, A., Moha´csi, A´ ., Bozo´ ki, Z. and co-authors. 2006. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315-3323.
    • Long, L. L., Querry, M. R., Bell, R. J. and Alexander, R. W. 1993. Optical properties of calcite and gypsum in chrystalline and powdered form in the infrared and far-infrared. Infrared Phys. 34, 191-201.
    • Macke, A. and Mishchenko, M. I. 1996. Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles. Appl. Opt. 35, 4291-4296.
    • Markowicz, K. M., Flatau, P. J., Vogelmann, A. M., Quinn, P. K. and Welton, E. J. 2003. Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Q. J. R. Meteorol. Soc. 129, 2927-2947.
    • Marra, A. C., Blanco, A., Fonti, S., Jurewicz, A. and Orofino, V. 2005. Fine hematite particles of Martian interest: absorption spectra and optical constants. J. Phys.: Conference Series 6, doi:10.1088/1742- 6596/6/1/013, 132-138.
    • Mishchenko, M. I. 1991. Light scattering by randomly oriented axially symmetric particles. J. Opt. Soc. Am. A8, 871-882.
    • Mishchenko, M. I. 1993. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength. Appl. Opt. 32, 4652-4666.
    • Mishchenko, M. I. and Travis, L. D. 1994a. T-matrix computations of light scattering by large spheroidal particles. Opt. Commun. 109, 16- 21.
    • Mishchenko, M. I. and Travis, L. D. 1994b. Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to a wavelength. Appl. Opt. 33, 7206-7225.
    • Mishchenko, M. I., Travis, L. D. and Mackowski, D. W. 1996. T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transfer 55, 535-575.
    • Mishchenko, M. I., Travis, L. D., Kahn, R. A. and West, R. A. 1997. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. 102(D14), 16831-1687.
    • Mishchenko, M. I. and Travis, L. D. 1998. Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer 60, 309-324.
    • Mogili, P. K., Yang, K. H., Young, M. A., Kleiber, P. D. and Grassian, V. H. 2007. Environmental aerosol chamber studies of extinction spectra of mineral dust aerosol components: broadband IRUV extinction spectra. J. Geophys. Res. 112, D21204, doi:10.1029/2007JD008890.
    • Molina, L. T. and Molina, M. J. 1986. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J. Geophys. Res. 91, 14 501-14 508.
    • Mooney, T. and Knacke, R. F. 1985. Optical constants of chlorite and serpentine between 2.5 and 50 μm. Icarus 64, 493-502.
    • Mu¨ ller, T., Schladitz, A., Massling, A., Kaaden, N., Wiedensohler, A. and co-authors. 2008. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1. Tellus 61B, doi:10.1111/j.1600-0889.2008.00399.x.
    • Myhre, G. and Stordal, F. 2001. Global sensitivity experiments of the radiative forcing due to mineral aerosols. J. Geophys. Res. 106(D16), 18 193-18 204.
    • Neshyba, S. P., Grenfell, T. C. and Warren, S. G. 2003. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates. J. Geophys. Res. 108(D15), 4448, doi:10.1029/2002JD003302.
    • Nicolet, M. 1984. On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere. Planet. Space Sci. 32, 1467-1468.
    • Nousiainen, T. and Vermeulen, K. 2003. Comparison of measured singlescattering matrix of feldspar particles with T-matrix simulations using spheroids. J. Quant. Spectrosc. Radiat. Transfer 79-80, 1031- 1042.
    • Nousiainen, T., Kahnert, M. and Veihelmann, B. 2006. Light scattering modeling of feldspar aerosol particles using polyhedral prisms and spheroids. J. Quant. Spectrosc. Radiat. Transfer 101, 471-487.
    • Olmo, F. J., Quirantes, A., Lara, V., Lyamani, H. and Alados-Arboledas, L. 2008. Aerosol optical properties assessed by an inversion method using the solar principal plane for non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer 109, 1504-1516.
    • Orphal, J., Fellows, C. E. and Flaud, P.-M. 2003. The visible absorption spectrum of NO3 measured by high-resolution Fourier-transform spectroscopy. J. Geophys. Res. 108(D3), doi:10.1029/2002JD002489.
    • Osborne, S. R., Johnson, B. T., Haywood, J. M., Baran, A. J., Harrison, M. A. J. and co-authors. 2008. Physical and optical properties of mineral dust aerosol during the Dust and Biomassburning Experiment (DABEX). J. Geophys. Res. 113, D00C03, doi:10.1029/2007JD009551.
    • Otto, S., de Reus, M., Trautmann, T., Thomas, A., Wendisch, M. and co-authors. 2007. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 7, 4887-4903.
    • Palmer, K. F. and Williams, D. 1975. Optical constants of sulfuric acid; application to the clouds of Venus? Appl. Opt. 14, 208-219.
    • Patterson, E. M., Gilette, D. A. and Stockton, B. H. 1977. Complex index of refraction between 300 and 700 nm for Saharan aerosols. J. Geophys. Res. 82, 3153-3160.
    • Perrone, M. R., Barnaba, F., de Tomasi, F., Gobbi, G. P. and Tafuro, A. M. 2004. Imaginary refractive-index effects on desert-aerosol extinction versus backscatter relationships at 531 nm: numerical computations and comparison with Raman lidar measurements. Appl. Opt. 43, 5531-5541.
    • Petzold, A., Rasp, K., Weinzierl, B., Esselborn, M., Hamburger, T. and co-authors. 2008. Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus 61B, doi:10.1111/j.1600-0889.2008.00383.x.
    • Philipp, H. R. 1985. Silicon Dioxide (SiO2), Type α (Crystalline). In: Handbook of Optical Constants of Solids I, (ed. E. D. Palik), Academic Press, New York, 719-747.
    • Pilinis, C. and Li, X. 1998. Particle shape and internal inhomogeneity effects in the optical properties of tropospheric aerosols of relevance to climate forcing. J. Geophys. Res. 103(D4), 3789- 3800.
    • Popova, S. I., Tolstykh, T. S. and Vorobev, V. T. 1972. Optical characteristics of amorphous quartz in the 1400-200 cm−1 region. Opt. Spectrosc. 33, 444-445.
    • Querry, M. R., Osborne, G., Lies, K., Jordan, R. and Coveney, R. M. jr. 1978. Complex refractive index of limestone in the visible and infrared. Appl. Opt. 17, 353-356.
    • Querry, M. R. 1987. Optical constants of mineral and other materials from millimeter to the UV. Rep. CRDEC-CR-88009, U.S., Aberdeen, MD.
    • Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L. and co-authors. 2003. Comparison of size and morphological measurements of coarse mode dust particles from Africa. J. Geophys. Res. 108(D19), 8593, doi:10.1029/2002JD002484.
    • Rother, T., Schmidt, K., Wauer, J., Shcherbakov, V. and Gayet, J.-F. 2006. Light scattering on Chebyshev particles of higher order. Appl. Opt. 45(23), 6030-6037.
    • Rothman, L. S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M. and co-authors. 2005. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139-204.
    • Roush, T., Pollack, J. and Orenberg, J. 1991. Derivation of mid-infrared (5 - 25 μm) optical constants of some silicates and palagonite. Icarus 94, 191-208.
    • Schladitz, A., Mu¨ ller, T., Kaaden, N., Massling, A., Kandler, K. and co-authors. 2008. In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006. Tellus 61B, doi:10.1111/j.1600-0889.2008.00397.x.
    • Schmid, B., Livingston, J. M., Russell, P. B., Durkee, P. A., Jonsson, H. H. and co-authors. 2000. Clear-sky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne in-situ, space-borne, and ground-based measurements. Tellus 52B, 568-593.
    • Schmid, B., Hegg, D. A., Wang, J., Bates, D., Redemann, J. and coauthors. 2003. Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. J. Geophys. Res. 108(D23), 8656, doi:10.1029/2002JD003361.
    • Schulz, F. M., Stamnes, K. and Stamnes, J. J. 1999. Shape dependence of the optical properties in size-shape distributions of randomly oriented prolate spheroids, including highly elongated shapes. J. Geophys. Res. 104(D8), 9413-9421.
    • Shettle, E. P. and Fenn, R. W. 1979. Models of the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Project 7670, Air Force Geoph. Lab., Massachusetts.
    • Sokolik, I. N., Andronova, A. and Johnson, T. C. 1993. Complex refractive index of atmospheric dust aerosols. Atmos. Environ. 27A(16), 2495-2502.
    • Sokolik, I. N. and Toon, O. B. 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. 104(D8), 9423- 9444.
    • Sokolik, I. N., Winker, D. M., Bergametti, G., Gilette, D. A., Carmichael, G. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. 106(D16), 18 015-18 027.
    • Stamnes, K., Tsay, S., Wiscombe, W. and Jayaweera, K. 1988. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502-2509.
    • Stamnes, K., Tsay, S.-C., Wiscombe, W. and Laszlo, I. 2000. DISORT, a general-purpose fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology. Tech. Rep., Dept. of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030.
    • Steyer, T. R., Day, K. L. and Huffman, D. R. 1974. Infrared absorption by small amorphous quartz spheres. Appl. Opt. 13, 1586- 1590.
    • Tegen, I. and Lacis, A. A. 1996. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101(D14), 19 237-19 244.
    • Tesche, M., Ansmann, A., Mu¨ ller, D., Althausen, D., Mattis, I. and coauthors. 2008. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B, doi:10.1111/j.1600-0889.2008.00390.x.
    • Toon, O. B., Pollack, J. B. and Khare, B. N. 1976. The optical constants of several atmospheric aerosol species: ammonium sulfate, ammonium oxide, and sodium chloride. J. Geophys. Res. 81, 5733-5748.
    • Tropf, W. J. 1998. Calcium Carbonate, Calcite (CaCO3). In: Handbook of Optical Constants of Solids III, (ed. E. D. Palik), Academic Press, New York, 701-715.
    • Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R. and co-authors. 1998. Measurements of the NO2 absorption cross-section from 42000 cm−1 to 10000 cm−1 (238-1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transfer 59, 171-184.
    • Voigt, S., Orphal, J., Bogumil, K. and Burrows, J. P. 2001. The temperature dependence (203-293 K) of the absorption cross sections of O3 in the 230-850 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 143, 1-9.
    • Voigt, S., Orphal, J. and Burrows, J. P. 2002. The temperature- and pressure-dependence of the absorption cross sections of NO2 in the 250-800 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A: Chem. 149, 1-7.
    • Volten, H., Mun˜ oz, O., Rol, E., de Haan, J. F., Vassen, W. and co-authors. 2001. Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm. J. Geophys. Res. 106(D15), 17 375-17 401.
    • Volz, F. E. 1972. Infrared refractive index of atmospheric aerosol substances. Appl. Opt. 11, 755-759.
    • Volz, F. E. 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash. Appl. Opt. 12, 564-568.
    • Volz, F. E. 1983. Infrared optical constants of aerosols at some locations. Appl. Opt. 22, 3690-3700.
    • Wang, J., Liu, X., Christopher, S. A., Reid, J. S., Reid, E. and coauthors. 2003. The effect of non-sphericity on geostationary satellite retrievals of dust aerosols. Geophys. Res. Lett. 30(4), 2293, doi:10.1029/2003GL018697.
    • Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K. and coauthors. 2008. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B, doi:10.1111/j.1600-0889.2008.00392.x.
    • Wendisch, M. and von Hoyningen-Huene, W. 1994. Possibility of refractive index determination of atmospheric aerosol particles by groundbased solar extinction and scattering measurements. Atmos. Environ. 28(5), 785-792.
    • Wendisch, M., Pilewskie, P., Ja¨kel, E., Schmidt, S., Pommier, J. and co-authors. 2004. Airborne measurements of areal spectral surface albedo over different sea and land surfaces. J. Geophys. Res. 109, D08203, doi:10.1029/2003JD004392.
    • Wiegner, M., Gasteiger, J., Kandler, K., Weinzierl, B., Rasp, K. and co-authors. 2008. Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications. Tellus 61B, doi:10.1111/j.1600-0889.2008.00381.x.
    • Wilmouth, D. M., Hanisco, T. F., Donahue, N. M. and Anderson, J. G. 1999. Fourier transform ultraviolet spectroscopy of the A2 3/2 − X2 3/2 transition of BrO. J. Phys. Chem. 103, 8935-8945.
    • Xie, Q., Zhang, H., Wan, Y., Zhang, Y. and Qiao, L. 2007. Characteristics of light scattering by smoke particles based on spheroid models. J. Quant. Spectrosc. Radiat. Transfer 107, 72-82.
    • Yang, P. and Liou, K. N. 1996. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 35, 6568-6582.
    • Yang, P., Kattawar, G. W. and Wiscombe, W. J. 2004. Effect of particle asphericity on single-scattering parameters: comparison between Platonic solids and spheres. Appl. Opt. 43(22), 4427-4435.
    • Yang, P., Feng, Q., Hong, G., Kattawar, G. W., Wiscombe, W. J. and co-authors. 2007. Modeling of the scattering and radiative properties of nonspherical dust-like aerosols. J. Aeros. Sci. 38, 995- 1014.
    • Yoshino, K., Freeman, D. E. and Parkinson, W. H. 1984. High resolution absorption cross section measurements of N2O at 295-299 K in the wavelength region 170-222 nm. Planet. Space. Sci. 32, 1219-1222.
    • Zuev, V. E. and Krekov, G. M. 1986. Atmospheric Optical Models. Gidrometeoizdat, Leningrad (in Russian).
    • Zukic, M., Torr, D. G., Spann, J. F. and Torr, M. R. 1990. Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, MgF2, Al2O3, HfO2, and SiO2 thin films. Appl. Opt. 29, 4284-4292.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article