Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhou, GuangQiang; Zhao, Chunsheng; Huang, Mengyu (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Radiative transfer process affects precipitation through complicated interactions and numerous processes betweenradiation, cloud microphysics, dynamical processes and precipitation processes. In this paper, a method is proposedto quantitatively estimate the effects of radiative transfer process on precipitation by defining equivalent radiativecooling/heating, which is combined by radiative cooling/heating and the vertical velocity variation ascribed to radiativetransfer process. This algorithm is verified by modelling a long-period rainfall case in June 2002. The results show thatradiative transfer process enhances diurnal precipitation variation by increasing the nocturnal rainfall and suppressing thedaytime’s as well as the total rainfall. The analysis of the domain-averaged and centres rainfall validates the applicabilityof the equivalent radiative mechanism, in which the vertical integrated saturation vapour depth temporal trend ascribed tothe equivalent radiative cooling/heating is employed to estimate the effect of radiative transfer process on precipitation.The results show that the method is a good approach for quantitatively estimating the effects of radiative transfer processon precipitation.DOI: 10.1111/j.1600-0889.2006.00186.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, T. P., Liou, K. N., Valero, P. J. and Pfister, L. 1988. Heating rates in tropical anvils. J. Atmos. Sci. 45, 1606-1623.
    • Betts, A. K. and Miller, M. J. 1986a. A new convective adjustment scheme. Part I: observational and theoretical basis. Q. J. R. Meteorol. Soc. 112, 677-692.
    • Betts, A. K. and Miller, M. J. 1986b. A new convective adjustment scheme. Part I. I.: single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Q. J. R. Meteorol. Soc. 112, 693-709.
    • Blackadar, A. K. 1978. Modeling pollutant transfer during daytime convection. Preprints Fourth Symposium on Atmospheric Turbulence, Diffusion and Air Quality, Reno. Amer. Met. Soc., pp. 443- 447.
    • Chen, S. and Cotton, W. R. 1988. The sensitivity of a simulated extratropical mesoscale convective system to longwave radiation and ice-phase microphysics. J. Atmos. Sci. 45, 3897-3910.
    • Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a two-dimensional model. J. Atmos. Sci. 46, 3077-3107.
    • Dudhia, J., Gill, D. Manning, K., Wang, W., Bruyere, C. and coauthors. 2005. PSU/NCAR mesoscale modeling system tutorial class notes and user's guide: MM5 modeling system version 3. http://www.mmm.ucar.edu/mm5/documents/tutorial-v3-notes.html Fu, Q., Krueger, S. K. and Liou, K.-N., 1995. Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci. 52, 1310-1328.
    • Gray, W. M. and Jacobson, R. A. Jr, 1977. Diurnal variation of deep cumulus convection. Mon. Wea. Rev. 105, 1171-1188.
    • Hong, S.-Y. and Pan, H.-L., 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev. 124, 2322- 2339.
    • Kraus, E. B. 1963. The diurnal precipitation change over the sea. J. Atmos. Sci. 20, 546-551.
    • Lou, X.-F., Hu, Z.-J. Shi, Y.-Q., Wang, P.-Y. and Zhou, X.-J. 2003. Numerical simulation of a heavy rainfall case in South China. Adv. Atmos. Sci. 20, 128-138.
    • Miller, R. A. and Frank, W. M., 1993. Radiative forcing of simulated tropical cloud clusters. Mon. Weather Rev., 121, 482-498.
    • Murray, F. W. 1967. On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203-204.
    • Randall, D. A., Harshvardhan and Dazlich, D. A., 1991. Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci. 48, 40-62.
    • Stephens, G. L. 1978. Radiation profiles in extended water clouds. Part I: Theory. J. Atmos. Sci. 35, 2111-2122.
    • Sui, C.-H., Lau, K.-M. Takayabu, Y. and Short, D. 1997. Diurnal variation in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci. 54, 639-655.
    • Sui, C.-H., Li, X. and Lau, K.-M., 1998. Radiative convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci. 55, 2345-2357.
    • Takayabu, Y. N. 2002. Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys. Res. Lett. 29(12), 1584, doi:10.1029/2001GL014113.
    • Tao, W.-K., Lang, S. Simpson, J., Sui, C.-H., Ferrier, B. and co-authors. 1996. Mechanisms of Cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci. 53, 2624-2651.
    • Xu, K.-M. and Randall, D. A. 1995. Impact of interactive radiative transfer on the microscopic behavior of cumulus ensembles. Part II: Mechanisms for cloud-radiation interactions. J. Atmos. Sci. 52, 800-817.
    • Zhou, G.-Q., Zhao, C.-S. and Qin, Y. 2005. Numerical study of the impact of cloud droplet spectral change on mesoscale precipitation. Atmos. Res. 78, 166-181.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from