Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Krishnamurti, T. N.; Jha, B.; Prospero, J.; Jayaraman, A.; Ramanathan, V. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
 Measurements of aerosol bulk composition, optical depth, size distribution and the incoming solar radiation flux were carried out over the coastal waters of India, the Arabian sea and the tropical Indian Ocean during a cruise conducted in January 1996. Aerosol concentrations were relatively high throughout much of the cruise, even when the ship was at considerable distances from land. In this paper, we link the observed spatial variations and meridional gradients in the measurements to monsoonal and inter-hemispheric transport across the ITCZ using a high resolution global reanalysis that highlights the winter monsoon. We show that the northeast monsoonal low level flow can transport sulfates, mineral dust and other aerosols from the Indian sub-continent to the ITCZ within 6–7 days. These transports result in an increase the aerosol optical depth (AOD) at the equator by as much as 0.2 and a decrease in the solar radiative forcing at the sea surface by about 10–20 Wm-2. The high concentrations of continental aerosols are a result of three factors: strong (about 6–10 m/s) near-surface northerly flow; a shallow boundary layer of about 400 to 800 m thick, which traps the pollutants; subsidence, associated with the northeast monsoon, which suppresses rainfall over most of the Arabian sea and thus minimizes the wet removal process. In addition dust can be transported in the middle troposphere from the Arabian desert to the cruise region 4000 km away with a transit time of 2–3 days. There is strong evidence of interhemispheric transports effected by eddies that wrap around the ITCZ. These eddies bring clean southern hemisphere air to about 10°N in the Indian Ocean and carry polluted continental air into the southern-hemisphere. In this manner, substantial amounts of aerosols and other pollutants can be routinely transported to the southern-hemisphere Indian Ocean during the northeast monsoon. Thus, in order to understand the connection between continental emissions and impacts over the Indian Ocean, it is necessary to focus on the rôle of the northeast monsoon in the large-scale atmospheric circulation over this region.DOI: 10.1034/j.1600-0889.1998.00009.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, S. A. and Cox, S. K., 1982. The Saudi Arabian heat low: Aerosol distributions and thermodynamic structure. J. Geophys. Res. 87, 8991-9002.
    • Ackerman, S. A. and Cox, S. K., 1989. Surface weather observations of atmospheric dust over the southeast summer monsoon region. Meteorol. Atmos. Phys. 41, 19-34.
    • Angreji, P. D., 1989. Revaluation of total ozone measurements with doubloon spectrophotometer at Mt. Abu/ Ahmedabad during 1951-1985. Scientific Report, ISRO-PRL-SR-34-89, Indian Space Research Organization, India, 34 pp.
    • Bullrich, K, 1964. Scattered radiation in the atmosphere. Adv. Geophys. 10, 99-260.
    • Chang, C. P. and T. N. Krishnamurit, 1987. Monsoon meteorology. Oxford Monographs on Geology and Geophysics no. 7.
    • Charlson, R. J., J. Langner, H. Rodhe, C. B. Leovy and S. G. Warren, 1991. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, T ellus 43A-B, 152-163.
    • Coakley, J. A. and D. G. Baldwin, 1984: Towards the objective analysis of clouds from satellite imagery data. J. Clim. Appl. Met. 23, 1065-1099.
    • Gairola, R. K. and T. N. Krishnamurti, 1992. Rain rates based on SSM/I, OLR and raingauge data sets. J. Meteorol. Atmos. Phys. 50, 165-174.
    • Hameed, S. and J. Dignon, 1992. Global emissions of nitrogen and sulfur oxides in fossil fuel combustion 1970-1986. J. Air Waste Manage. Assoc. 42, 159-163.
    • Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor and E. Celarier, 1997. Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data. J. Geophys. Res. 102, 16911-16922.
    • Husar, R. B., J. M. Prospero and L. L. Stowe, 1997. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res. 102, 16889-16909.
    • IPCC, Climate Change, 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, 339 pp, ed., John T. Houghton, 1995.
    • Jayaraman, A., D. Lubin, S. Ramachndran, V. Ramanathan, E. Woodbridge, W. D. Collins and K. S. Zalupuri, 1998. Direct observation of aerosol radiative forcing over the tropical Indian Ocean during the Jan.- Feb. 1996 pre-INDOEX cruise. J. Geophys. Res. 103, 13827-13836.
    • Kiehl, J. T. and B. P. Brieglab, 1993. The radiative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
    • Krishnamurti, T.N., ed. 1978. Monsoon dynamics, contributions to current research in geophysics. Birkhauser Verlag, pp. 1087-1529.
    • Krishnamurti, T. N., H. Pan, C. B. Chang, J. Polshay, and W. Odally, 1979. Numerical Weather Prediction for GATE. Q. J. R. Meteor. Soc. 105, 979-1010.
    • Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles and D. Oosterhof, 1991. Physical initialization for numerical weather prediction over the tropics. T ellus 43A-B, 53-81.
    • Krishnamurti, T. N., M. C. Sinha, M. Kanamitsu, D. Oosterhof, M. Fuelberg, R. Chatfield, B. J. Jacob and J. Logan, 1996. Passive forces transport-relevant to the Trace A experiment. J. Geophys. Res. 101, 23, 889-907.
    • Li, X., H. B. Maring, D. Savoie, K. Voss and J. M. Prospero, 1996. Dominance of mineral dust in aerosol light scattering in the North Atlantic trade winds. Nature 380, 416-419.
    • Perry, K. D., T. A. Cahill, R. A. Eldred, D. D. Dutcher and T. E. Gill, 1998. Long-range transport of Saharan dust to the eastern United States. J. Geophys. Res., in press.
    • Prodi, F., G. Santachiara and F. Olioski, 1983. Characterization of aerosols in marine environments (Mediterranean, Red Sea, and Indian Ocean). J. Geophys. Res. 88, 10957-10968.
    • Prospero, J. M., 1996. The atmospheric transport of particles to the ocean. In: Ittekkott, V. Honjo & Depetris, P. J. (eds.): Particle flux in the ocean; 1996 SCOPE, Report 57. John Wiley & Sons Ltd., 19-52.
    • Pszenny, A., D. Fischer, A. Mendez and M. Zetwo, 1993. Direct comparison of cellulose and quartz fiber filters for sampling submicrometer aerosols in the marine boundary layer. Atmos. Environ. 27A, 281-284.
    • Ramanathan, V., P. J. Crutzen, J. Coakley, R. Dickerson, A. Heymsfield, J. Kiehl, D. Kley, T. N. Krishnamurti, J. Kuettner, J. Lelieveld, A. P. Mitra, J. Prospero, R. Sadourny, F. P. J. Valero and E. L. Woodbridge, 1995. Indian ocean experiment (INDOEX) white paper, C4. Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0239, USA.
    • Ramanathan, V., P. J. Crutzen, J. A. Coakley, A. Clarke, W. D. Collins, R. Dickerson, D. Fahey, B. Gandrud, A. Heymsfield, J. T. Kiehl, J. Kuettner, T. N. Krishnamurti, D. Lubin, H. Maring, J. Ogren, J. Prospero, P. J. Rasch, D. Savoie, G. Shaw, A. Tuck, F. P. J. Valero, E. L. Woodbridge and G. Zhang, 1996. Indian ocean experiment (INDOEX), a multi-agency proposal for a field experiment in the Indian Ocean, C4. Scripps Institution of Oceanography, UCSD, La Jolla, California 92093-0239, USA, 83 pp.
    • Rhoads, K. P., P. Kelley, R. R. Dickerson, T. P. Carsey, M. Farmer, D. L. Savoie and J. M. Prospero, 1998. The composition of the troposphere over the Indian Ocean during the monsoonal transition. J. Geophys. Res., in press.
    • Russel, P. B. and J. M. Livingston, 1984. Slant-lidar aerosol extinction measurements and their relation to measured and calculated albedo changes. J. Clim. Appl. Meteor. 23, 1204-1221.
    • Sarkar, S. K., H. N. Dutta, P. K. Pasricha and B. M. Reddy, 1982. Atlas of tropospheric water vapor over the Indian subcontinent. National Physical Laboratory, New Delhi, 164 pp.
    • Sasi, M. N. and Sengupta, A. 1986. A reference atmosphere for Indian equatorial zone f rom surface to 80 km. Scientific Report, SPL:SR006:85, Vikram Sarabhai Space Center, Thumbia, India.
    • Saunders, R. W., G. Brogniez, J. C. Buriez, R. Meerkotter and P. Wendling, 1992. A comparison of measured and modeled broadband fluxes from Aircraft data during the ICE'89 field experiments. J. Atmos. Ocean. T echnol. 7, 391-406.
    • Savoie, D. L., 1984. Nitrate and non-sea-salt sulfate aerosols over major regions of the world oceans: concentration, sources and fluxes. Ph.D. thesis, University of Miami. Miami, Florida, 432 pp.
    • Savoie, D. L., and J. M. Prospero, 1982. Particle size distribution of nitrate and sulfate in the marine atmosphere. Geophys. Res. L ett. 9, 1207-1210.
    • Savoie, D. L., J. M. Prospero and R. T. Nees, 1987. Nitrate, non-sea-salt sulfate, and mineral aerosol over the northwestern Indian Ocean. J. Geophys. Res. 92, 933-942.
    • Savoie, D. L., J. M. Prospero and E. S. Saltzman, 1989a. Non-seasalt sulfate and nitrate in trade wind aerosols at Barbados: Evidence for long-range transport. J. Geophys. Res. 94, 5069-5080.
    • Savoie, D. L., J. M. Prospero and E. S. Saltzman, 1989b. Nitrate, non-seasalt sulfate and methanesulfonate over the Pacific Ocean. In Chemical Oceanography, vol. 10, eds. : J. P. Riley, R. Chester and R. A. Duce. Academic, San Diego, Calif., 219-250.
    • Savoie, D. L., J. M. Prospero, R. Arimoto, and R. A. Duce, 1994. Non-sea-salt sulfate and methanesulfonate at American Samoa. J. Geophys. Res. 99, 3587-3596.
    • Sokolik, I. N. and O. B. Toon, 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols Nature 381, 681-683.
    • Tegen, I., A. A. Lacis, and I. Fung, 1996. The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380, 419-422.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from