LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ichii, Kazuhito; Matsui, Yohei; Murakami, Kazutaka; Mukai, Toshikazu; Yamaguchi, Yasushi; Ogawa, Katsuro (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
A simple Earth system model, the Four-Spheres Cycle of Energy and Mass (4-SCEM) model, has been developed to simulate global warming due to anthropogenic CO2 emission. The model consists of the Atmosphere–Earth Heat Cycle (AEHC) model, the Four Spheres Carbon Cycle (4-SCC) model, and their feedback processes. The AEHC model is a one-dimensional radiative convective model, which includes the greenhouse effect of CO2 and H2O, and one cloud layer. The 4-SCC model is a box-type carbon cycle model, which includes biospheric CO2 fertilization, vegetation area variation, the vegetation light saturation effect and the HILDA oceanic carbon cycle model. The feedback processes between carbon cycle and climate considered in the model are temperature dependencies of water vapor content, soil decomposition and ocean surface chemistry. The future status of the global carbon cycle and climate was simulated up to the year 2100 based on the “business as usual” (IS92a) emission scenario, followed by a linear decline in emissions to zero in the year 2200. The atmospheric CO2 concentration reaches 645 ppmv in 2100 and a peak of 760 ppmv approximately in the year 2170, and becomes a steady state with 600 ppmv. The projected CO2 concentration was lower than those of the past carbon cycle studies, because we included the light saturation effect of vegetation. The sensitivity analysis showed that uncertainties derived from the light saturation effect of vegetation and land use CO2 emissions were the primary cause of uncertainties in projecting future CO2 concentrations. The climate feedback effects showed rather small sensitivities compared with the impacts of those two effects. Satellite-based net primary production trends analyses can somewhat decrease the uncertainty in quantifying CO2 emissions due to land use changes. On the other hand, as the estimated parameter in vegetation light saturation was poorly constrained, we have to quantify and constrain the effect more accurately.DOI: 10.1034/j.1600-0889.2003.00035.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bacastow, R. B. and Keeling, C. D. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II Changes from A.D. 1700 to 2070 as deduced from a geochemical model. In: Carbon and the biosphere (eds. G. M. Woodwell and E. V. Pecan). Rep. CONF-720510. US Atomic Energy Commission, Washington, DC, 86- 135.
    • Cao, M. and Woodward, F. I. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249-252.
    • Charlson, R. J. 2000. The coupling of biogeochemical cycles and climate: forcings, feedbacks, and responses. In: Earth system sciences (eds. M. C. Jacobson, R. J. Charlson, H. Rodhe and G. H. Orians). Academic Press, London, 439- 458.
    • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187.
    • Craig, S. G. and Holme´n, K. J. 1995. Uncertainties in future CO2 projections. Global Biogeochem. Cycles 9, 139- 152.
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A. and Yong-Molling, C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357-373.
    • Cramer, W., Kicklighter D. W., Bondeau, A., Moore III, B., Churkina, G., Nemry, B., Ruimy, A., Schloss, A. L. and the participants of the Potsdam NPP model intercomparison. 1999. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biol. 5, 1-15.
    • Enting, I. G., Wigley, T. M. L. and Heimann, M. 1994. Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analysis. CSIRO Division of Atmospheric Res. Tech. Pap. 31, Victoria, Australia.
    • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M. and Morgan, V. I., 1998. Historical CO2 records from the Law Dome DE08, DE08-02, and DSS ice cores. In: Trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
    • Fujii, M., Ikeda, M. and Yamanaka, Y. 2000. Roles of physical processes in the carbon cycle using a simplified physical model. J. Oceanogr. 56, 655-666.
    • Goyet, C. and Poisson, A. 1989. New determination of carbonic acid dissociation constants in sea water as a function of temperature and salinity. Deep Sea Res. Part A 36, 1635-1654.
    • Harrison, K., Broecker, W. and Bonani, G. 1993. A strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochem. Cycles 7, 69-80.
    • Hayashi, M. 1991. One dimensional radiative model. In: Earth environmental simulation (ed. O. Yokoyama), Hakua-Shobo (in Japanese), 85-109.
    • Heimann, M. and Keeling, C. D. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds. 2. Model description and simulated tracer experiments. In: Aspects of climate variability in the Pacific and Western Americas. Geophysical Monograph Ser. 55, 237- 275.
    • Houghton, J. T. 1977. The physics of atmospheres. Cambridge University Press, Cambridge.
    • Houghton, J. T., Filho, L. G. M., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. 1996. Climate Change 1995: the science of climate change, Cambridge University Press, Cambridge.
    • Houghton, R. A. and Hackler, J. A. 2001. Carbon flux to the atmosphere from land-use changes: 1850 to 1990. ORNL/CDIAC-131, NDP-050/R1. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
    • Huntingford, C. and Cox, P. M. 2000. An analogue model to derive additional climate change scenarios from existing GCM simulations. Climate Dynam. 16, 575-586.
    • Ichii, K., Matsui, Y., Yamaguchi, Y. and Ogawa, K. 2001. Comparison of global net primary production trend obtained from satellite based normalized difference vegetation index and a carbon cycle model. Global Biogeochem. Cycles 15, 351-364.
    • Jain, A. K., Kheshgi, H. S., Hoffert, M. I. and Wuebbles, D. J. 1995. Distribution of radiocarbon as a test of global carbon cycle models. Global Biogeochem. Cycles 9, 153-166.
    • Jones, P. D., Parker, D. E., Osborn, T. J. and Briffa, K. R. 2000. Global and hemispheric temperature anomalies - land and marine instrumental records. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA.
    • Keeling, C. D. and Whorf, T. P. 1999. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A compendium of data on global change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
    • Kheshgi, H. S., Jain, A. K. and Wuebbles, D. J. 1996. Accounting for the missing carbon-sink with the CO2 fertilization effect. Climatic Change 33, 31-62.
    • Kiehl, J. T. and Trenberth, K. E. 1997. Earth's annual global mean energy budget. Bull. Am. Meteorol. Soc. 78, 197- 208.
    • Kumar, M. and Monteith, J. L. 1981. Remote sensing of crop growth. In: Plants and the daylight spectrum (ed. H. Smith). Academic, San Diego, California, 133-144.
    • Kwon, O. Y. and Schnoor, J. L. 1994. Simple global carbon model: The atmosphere-terrestrial biosphere-ocean interaction. Global Biogeochem. Cycles 8, 295-305.
    • Lacis, A. A. and Hansen, J. E. 1974. A parameterization for the absorption of solar radiation in the Earth's atmosphere. J. Atmos. Sci. 31, 118-133.
    • Leggett, J., Pepper, W. J. and Swart, R. J. 1992. Emissions scenarios of the IPCC: an update. In: Climate Change: The supplementary report to the IPCC scientific assessment (eds. J. T. Houghton, B. A. Callander and S. K. Varney). Cambridge University Press, Cambridge.
    • Lenton, T. M. 2000. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus 52B, 1159-1188.
    • Malmstro¨m, C. M., Thompson, M. V., Juday, G. P., Los, S. O., Randerson, J. T. and Field, C. B. 1997. Interannual variation in global-scale net primary production: Testing model estimates. Global Biogeochem. Cycles 11, 367-392.
    • Manabe, S. and Strickler, R. F. 1964. Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci. 21, 361-385.
    • Marland, G., Boden, T. A. and Andres, R. J. 2000. Global, regional, and national fossil fuel CO2 emissions. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
    • McCree, K. J. 1981. Photosynthetically active radiation. In: Physiological plant ecology. I. Responses to the physical environment Vol.12A (eds. O. L. Lange et al). SpringerVerlag, New York, 41-55.
    • Nakajima, S., Hayashi, Y. Y. and Abe, Y. 1992. A study on the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256-2266.
    • Orr, J. C., Maier-Reimer, E., Mikolajewica, U., Monfray, P., Sarmiento, J. L., Toggweiler, J. R., Taylor, N. K., Palmer, J., Gruber, N., Sabine, C. L., Quere, C. L., Key, R. M. and Boutin, J. 2001. Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles 15, 43-60.
    • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Money, H. A. and Klooster, S. A. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem. Cycles 7, 811-841.
    • Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Quere, C. L., Scholes, R. J. and Wallace, D. W. R. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson). Cambridge University Press, Cambridge, United Kingdom and New York, USA, 183- 237.
    • Raich, J. W. and Schlesinger, W. H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81-99.
    • Rossow, W. B., Walker, A. W., Beuschel, D. E. and Roiter, M. D. 1996. International Satellite Cloud Climatology Project (ISCCP): documentation of new cloud datasets. WMO/TD-No. 737, World Meteorological Organization, p. 115.
    • Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. and Manabe, S. 1998. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245-249.
    • Schimel, D., Enting, I. G., Heimann, M., Wigley, T. M. L. and Raynaud, R. 1995. CO2 and carbon cycle. In: Climate change 1994 (eds. J. T. Houghton, L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, E. Harris and K. Maskell). Cambridge University Press, New York, 35-71.
    • Schimel, D., Alves, D., Enting, I. G., Heimann, M., Joos, F., Raynaud, D. and Wigley, T. M. L. 1996. CO2 and the carbon cycle. In: Climate change 1995: The science of climate change: contribution of WGI to the second assessment report of the IPCC (eds. J. T. Houghton, J. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell). Cambridge University Press, Cambridge, 65- 86.
    • Shaffer, G. and Sarmiento, J. L. 1995. Biogeochemical cycling in the global ocean. 1. A new, analytical model with continuous vertical resolution and high-latitude dynamics. J. Geophys. Res. 100, 2659-2672.
    • Siegenthaler, U. and Joos, F. 1992. Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus 44B, 186-207.
    • Siegenthaler, U. and Sarmiento, J. L. 1993. Atmospheric carbon dioxide and ocean. Nature 365, 119-125.
    • Sitch, S. 2000. The role of vegetation dynamics in the control of atmospheric CO2 content. Ph.D. Thesis, University of Lund, Sweden, 213 pp.
    • Somerville, R. C. and Remer, L. A. 1984. Cloud optical thickness feedbacks in the CO2 climate problem. J. Geophys. Res. 89, 9668-9672.
    • Stephens, G. L. 1978. Radiative profiles in extended water clouds. 2: Parameterization scheme, J. Atmos. Sci. 35, 2123-2132.
    • United Nations 1999. The world at six billion. Population Division, Department of Economic and Social Affairs, United Nations Secretariat.
    • Weiss, R. F. 1974. Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chem. 2, 203-215.
    • Wigley, T. M. L. 1993. Balancing the carbon budget: Implications for projections of future carbon dioxide concentration changes. Tellus 45B, 409-425.
    • Wigley, T. M. L., Jain, A. K., Joos, F., Nyenzi, B. S. and Shukla, P. R. 1997. Implications of proposed CO2 emissions limitations. IPCC Technical Paper 4. (eds. J. T. Houghton, L. G. Meira Filho, D. J. Griggs, and M. Noguer). Intergovernmental Panel on Climate Change, Bracknell, UK.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    65
    65%
    69
    69%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from