LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Li, Fuyu; Collins, William D.; Wehner, Michael F.; Williamson, David L.; Olson, Jerry G.; Algieri, Christopher (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized ‘aquaplanet-steady-state’ boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B. and co-authors. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109, doi:10.1029/2005JD006290.
    • Boyle, J. and Klein, S. A. 2010. Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J. Geophys. Res. 115, D23113, doi:10.1029/2010JD014262.
    • Chen, C. T. and Knutson, T. 2008. On the verification and comparison of extreme rainfall indices from climate models. J. Climate 21, 1605-1621.
    • Christensen, J. H. and Christensen, O. B. 2003. Severe summertime flooding in Europe. Nature 421, 805-806.
    • Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R. and co-authors. 2004. Description of the NCAR Community Atmosphere Model (CAM3), Tech. Note NCAR-TN-464+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.
    • Courant, R., Friedrichs, K. and Lewy, H. 1967. On the partial difference equations of mathematical physics. IBM J. 11, 215-234.
    • Duffy, P. B., Govindasamy, B., Iorio, J. P., Milovich, J., Sperber K. R. and co-authors. 2003. High-resolution simulations of global climate, Part 1: present climate. Clim. Dyn. 21, 317-390.
    • Durman, C. F., Gregory, J. M., Hassell, D. C., Jones, R. G. and Murphy J. M. 2001. Comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quart. J. Roy. Meteor. Soc. 127, 1005-1015, doi:10.1002/qj.49712757316.
    • Emori, S. and Brown, S. J. 2005. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 32, L17706, doi:10.1029/2005GL023272.
    • Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M. and co-authors. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 19, 193-212.
    • Ghan, S., Bian, X., Hunt, A. and Coleman, A. 2002. The thermodynamic influence of subgrid orography in a global climate model. Clim. Dyn. 20(1), 31-44, doi:10.1007/s00382-002-0257-5.
    • Giorgi, F. and Avissar, R. 1997. Representation of heterogeneity effects in Earth system modeling: experience from land surface modeling. Rev. Geophys. 35(4), 413-437, doi:10.1029/97RG01754.
    • Hack, J. J., Caron, J. M., Danabasoglu, G., Oleson, K. W., Bitz, C. M. and Truesdale J. E. 2006. CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J. Clim. 19, 2267-2289.
    • Kharin, V. V., Zwiers, F. W., Zhang, X. and Hegerl, G. C. 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419-1444.
    • Lau, N.-C. and Ploshay, J. J. 2009. Simulation of synoptic- and subsynoptic-scale phenomena associated with the East Asian summer monsoon using a high-resolution CCM. Mon. Wea. Rev. 137(1), 137-160.
    • Neale R. B. and Hoskins B. J. 2000. A standard test for AGCMs including their physical parametrizations: I: the proposal. Atmos. Sci. Lett. 1(2), 101-107, doi:10.1006/asle.2000.0022.
    • O'Gorman, P. A. and Schneider, T. 2009. Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Clim. 22, 5676-5685.
    • Pall, P., Allen, M. R. and Stone, D. A. 2007. Testing the ClausiusClapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 28, 351-363, doi:10.1007/s00382-006-0180-2.
    • Parry, M. L., Canziani, O. F., Palutikof, J. P., Van der Linden, P. J., and Hanson, C. E. 2007. Technical Summary. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson). Cambridge University Press, Cambridge, UK, 23-78.
    • Pope, V. D. and Stratton R. A. 2002. The processes governing horizontal resolution sensitivity in a climate model. Clim. Dyn. 19, 211- 236.
    • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T. and co-authors. 2007. Climate models and their evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Avery, M. Tignor and H. L. Miller). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Rasch, P. J., Stevens, M. J., Ricciardulli, L., Dai, A., Negri, A. and co-authors. 2006. A characterization of Tropical transient activity in the CAM3 atmospheric hydrologic cycle. J. Clim. 19, 2222-2242, doi:10.1175/JCLI3752.1.
    • Schneider, T. and O'Gorman, P. A. 2007. Precipitation and its extremes in changed climates. Extreme Events: Proc. 'Aha Huliko'a Hawaiian Winter Workshop, Honolulu, HI, University of Hawaii at Manoa, 61-66.
    • Schumacher, C. and Houze R. A. 2003. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 16(11), 1739-1756.
    • Sun, Y., Solomon, S., Dai, A. and Portmann R. W. 2006. How often will it rain? J. Clim. 20, 4801-4818.
    • Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D. and co-authors. 2007. Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Williamson, D. L. 2008. Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3. Tellus 60A, 848-862.
    • Wehner M. F., Bala, G., Duffy, P., Mirin, A. A. and Romano R. 2010. Towards direct simulation of future tropical cyclone statistics in a high-resolution global atmospheric model.” Adv. Meteorol. 2010, Article ID 915303, 13 pages, 2010. doi:10.1155/2010/915303.
    • Wilcox, E. M. and Donner L. J. 2007. The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Clim. 20, 53-69.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from