Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Krishnamurti, T. N.; Sanjay, J. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Can the superensemble methodology provide improved precipitation forecasts by combining existing physical parameterizations? We recently addressed this question in the context of Numerical Weather Prediction (NWP).We feel, however, that the information provided here may be useful for seasonal climate modeling as well. In theNWPcontext, we have developed multi-model forecasts from six versions of the Florida State University global spectral model (at a horizontal resolution of 170 waves, triangular truncation). These different versions deployed six different cumulus parameterization schemes; these models were identical in all other aspects, including the initial states. Making the assumption that differences in short-range (one day) forecasts of precipitation arise largely from differences in the cumulus parameterization, a superensemble methodology, following a recent study, was deployed to assign geographically distributed weights to convective heating for the different cumulus parameterization schemes. This was done after completion of some 85 experiments for each model for the training phase of the superensemble. A new single spectral model was next designed that included the weighted sum of the six cumulus parameterization schemes strung out within this model. This model was next shown to outperform in NWP forecasts of precipitation compared to any of those models that used a single cumulus parameterization scheme. This merely suggests that no single, present scheme is superior to all other schemes over the entire tropical belt; they all seem to have some virtues over different geographical regions. This Unified collective scheme is physically based since it does carry mechanisms such as mass flux, moisture convergence, cloud detrainment, downdrafts, effects of sea surface temperature etc. that are explicitly carried within one or the other schemes. This collective scheme is, however, based on optimized weights for these processes that vary geographically. It is our premise that even if a new breakthrough in cumulus parameterization were to occur from the development of a new scheme, that scheme, at best, may only achieve a skill ranking of number three for precipitation forecasts. The first place, we noted, still belongs to a multi-model superensemble, based on the optimal combination of six separate models. The second place belongs to the single model that utilizes a strung out weighted sum of many cumulus parameterization schemes within it. The individual member models have larger precipitation forecast errors compared to the two above. The skills, here, are evaluated using standard metrics such as correlations, root mean square errors and the equitable threat scores; finally we also present the vertical profiles of the apparent heat source and the apparent moisture sink that also confirm these above findings.DOI: 10.1034/j.1600-0870.2003.00021.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674-701.
    • Be´lair, S., Me´thot, M. A., Mailhot, J., Bilodeau, B., Patoine, A., Pellerin, G. and Coˆte´, J. 2000. Operational Implementation of the Fritsch-Chappell Convective Scheme in the 24-km Canadian Regional Model. Wea. Forecasting 15, 257-275.
    • Businger, J. A., Wyngard, J. C., Izumi, Y. and Bradley, E. F. 1971. Flux profile relationship in the atmospheric surface layer. J. Atmos. Sci. 28, 181-189.
    • Das, S., Mitra, A. K., Iyengar, G. R. and Mohandas, S. 2001. Comprehensive test of different cumulus parameterization schemes for the simulation of the Indian summer monsoon. Meteorol. Atmos. Phys. 78, 227-244.
    • Emanuel, K. A. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48, 2313- 2335.
    • Emanuel, K. A. and Zivkovic-Rothman, M. 1999. Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 56, 1766-1782.
    • Ferretti, R., Paolucci, T., Zheng, W., Guido Visconti, and Bonelli, P. 2000. Analyses of the precipitation pattern on the Alpine region using different cumulus convection parameterizations. J. Appl. Meteorol. 39, 182- 200.
    • Grell, G. A. 1993. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev. 121, 764- 787.
    • Harshvardan and Corsetti, T. G. 1984. Long-wave parameterization for the UCLA/GLAS GCM. NASA Tech. Memo. 86072, Goddard Space Flight Center, Greenbelt, MD, 52 pp.
    • John, P. G. 2001. Implementation of a shortwave radiation parameterization scheme in the NCMRWF operational global model. In: Research activities in atmospheric and oceanic modelling. Rep. No: 31, WMO/TD No. 1064, 4.3- 4.4.
    • Kanamitsu, M. 1975. On numerical prediction over a global tropical belt. Dept. of Meteorology Rep. 75-1, Florida State University, Tallahassee, FL, 282 pp.
    • Kanamitsu, M., Tada, K., Kudo, K., Sato, N. and Ita, S. 1983. Description of the JMA operational spectral model. J. Meteorol. Soc. Jpn. 61, 812-828.
    • Kitade, T. 1983. Nonlinear normal mode initialization with physics. Mon. Wea. Rev. 111, 2194-2213.
    • Krishnamurti, T. N. and Bedi, H. S. 1988. Cumulus parameterization and rainfall rates III. Mon. Wea. Rev. 116, 583- 599.
    • Krishnamurti, T. N., Ramanathan, Y., Pan, H. L., Pasch, R. J. and Molinari, J. 1980. Cumulus parameterization and rainfall rates I. Mon. Wea. Rev. 108, 465-472.
    • Krishnamurti, T. N., Low-Nam, S. and Pasch, R. 1983. Cumulus parameterization and rainfall rates II. Mon. Wea. Rev. 111, 815-828.
    • Krishnamurti, T. N., Xue, J., Bedi, H. S., Ingles, K. and Oosterhof, D. 1991. Physical initialization for numerical weather prediction over the tropics. Tellus 43AB, 53-81.
    • Krishnamurti, T. N., Bedi, H. S. and Ingles, K. 1993. Physical initialization using SSM/I rain rates. Tellus 45A, 247-269.
    • Krishnamurti, T. N., Bedi, H. S., Oosterhof, D. and Hardiker, V. 1994. The formation of hurricane Frederic of 1979. Mon. Wea. Rev. 122, 1050-1074.
    • Krishnamurti, T. N., Kishtawal, C. M., LaRow, T., Bachiochi, D., Zhang, Z., Williford, C. E., Gadgil, S. and Surendran, S. 1999. Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285, 1548-1550.
    • Krishnamurti, T. N., Kishtawal, C. M., Zhang, Z., LaRow, T., Bachiochi, D., Williford, C. E., Gadgil, S. and Surendran, S. 2000a. Multimodel ensemble forecasts for weather and seasonal climate. J. Climate 13, 4196-4216.
    • Krishnamurti, T. N., Kishtawal, C. M., Shin, D. W. and Williford, C. E. 2000b. Improving tropical precipitation forecasts from a multianalysis superensemble. J. Climate 13, 4217-4227.
    • Krishnamurti, T. N., Surendran, S., Shin, D. W., CorreaTorres, R. J., Vijayakumar, T. S. V., Williford, C. E., Kummerow, C., Adler, R. F., Simpson, J., Kakar, R., Olson, W. S. and Turk, F. J. 2001. Real-time multianalysismultimodel superensemble forecasts of precipitation using TRMM and SSM/I products. Mon. Wea. Rev. 129, 2861- 2883.
    • Krishnamurti, T. N., Stefanova, L., Chakraborty, A., Vijayakumar, T. S. V., Cocke, S., Bachiochi, D. and Mackey, B. 2002. Seasonal forecasts of precipitation anomalies for North American and Asian monsoons. J. Meteorol. Soc. Jpn., in press.
    • Kuo, Y.-H., Reed, R. J. and Liu, Y.-B. 1996. The ERICA IOP 5 storm. Part III: Mesoscale cyclogenesis and precipitation parameterization. Mon. Wea. Rev. 124, 1409-1434.
    • Lacis, A. A. and Hansen, J. E. 1974. A parameterization for the absorption of solar radiation in the earth's atmosphere. J. Atmos. Sci. 31, 118-133.
    • Lord, S. J. and Arakawa, A. 1980. Interaction of a cloud ensemble with the large-scale environment. Part II. J. Atmos. Sci. 37, 2677-2692.
    • Lord, S. J., Chao, W. C. and Arakawa, A. 1982. Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci. 39, 104-113.
    • Louis, J. F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol. 17, 187- 202.
    • Mesinger, F. 1996. Improvements in quantitative precipitation forecasts with the Eta regional model at the NCEP: The 48-km upgrade. Bull. Am. Meteorol. Soc. 77, 2637- 2649.
    • Moorthi, S. and Suarez, M. J. 1992. Relaxed ArakawaSchubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev. 120, 978-1002.
    • Palmer, T. N. and Tibaldi, S. 1988. On the prediction of forecast skill. Mon. Wea. Rev. 116, 2453-2480.
    • Pan, H.-L. and Wu, W.-S. 1995. Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note, No. 409, 40 pp. [Available from NCEP, 5200 Auth Road, Washington, DC 20233].
    • Rajendran, K., Nanjundiah, R. S. and Srinivasan, J. 2002. Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes. Meteorol. Atmos. Phys. 79, 57-86.
    • Raymond, D. J. and Blyth, A. M. 1986. A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci. 43, 2708-2718.
    • Reed, R. J., Norquist, D. C. and Recker, E. E. 1977. The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev, 105, 317-333.
    • Ross, R. S. and Krishnamurti, T. N. 2003. Reduction of systematic errors for global numerical weather prediction from the FSU superensemble. Meteorol. Atmos. Phys., in press.
    • Shin, D. W. and Krishnamurti, T. N. 2003. Short- to mediumrange superensemble precipitation forecasts using satellite products. Part I: Deterministic forecasting. J. Geophys. Res., 108(D8), 10.1029/2001JD001510, in press.
    • Shin, D. W. and Krishnamurti, T. N. 2003. Short- to mediumrange superensemble precipitation forecasts using satellite products. Part II: Probabilistic forecasting. J. Geophys. Res., 108(D8), 10.1019/2001JD001511, in press.
    • Tiedke, M. 1984. The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc., Workshop on Convection in Large-scale Numerical Models. ECMWF, Reading, U.K., 297-316.
    • Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317-2330.
    • Wallace, J. M., Tibaldi, S. and Simmons, A. J. 1983. Reduction of systematic forecast errors in the ECMWF model through the introduction of envelope orography. Quart. J. R. Meteorol. Soc. 109, 683-718.
    • Wang, W. and Seaman, N. L. 1997. A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev. 125, 252-278.
    • Yanai, M., Esbensen, S. and Chu, J. H. 1973. Determination of bulk properties of tropical cloud clusters from largescale heat and moisture budgets. J. Atmos. Sci. 30, 611- 627.
    • Zhang, G. J. and McFarlane, N. A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean. 33, 407-446.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article

Collected from