LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, X. Y.; Wang, Y. Q.; Zhang, X. C.; Guo, W.; Niu, T.; Gong, S. L.; Yin, Y.; Zhao, P.; Jin, J. L.; Yu, M. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
This paper reports on the analysis of 24-h aerosol data measured during 2006, at 14 monitoring sites in China. Measurements included seven-wavelength Aethalometers, thermal/optical reflectance analyses of filter samples and determination of dust aerosols. Black (elemental) carbon (BC, EC) is found to be the principal light-absorbing aerosol over many parts of China; however, the fraction of apparent light absorption attributed to dust varied from 14% in winter, to 11% in spring, to 5% in summer to 9% in autumn. Aerosol light absorption in urban areas was larger than in rural areas by factors of 2.4 in winter, 3.1 in spring and 2.5 in both summer and autumn. These differences may lead to contrasts in radiative, thermal and cloud modification effects between urban and rural areas. Absorption ‘hotspots’ were located in the Sichuan Basin, the provinces south of Beijing, the Pearl Delta River regions and the Guanzhong Plain. The mass absorption coefficient for aerosol BC (σBC) based on Aethalometer data is estimated to be 11.7 m2 g-1 at 880 nm wavelength (λ) with inverse (λ-1) wavelength scaling, whereas the mass absorption coefficient for dust (σdust) is 1.3 m2 g-1 on average without significant wavelength dependence.DOI: 10.1111/j.1600-0889.2008.00359.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V. and co-authors. 2000. Reduction of tropical cloudiness by soot. Science 288(5468), 1042-1947.
    • Babich, P., Davey, M., Allen, G. and Koutrakis, P. 2000. Method comparisons for particulate nitrate, elemental carbon, and PM2.5 mass in seven U.S. cities. JAWMA 50(7), 1095-1105.
    • Bauer, S. E., Mishchenko, M. I., Lacis, A. A., Zhang, S., Perlwitz, J. and co-authors. 2007. Do sulfate and nitrate coatings on mineral dust have important effects on radiative properties and climate modeling? J. Geophys. Res. 112, D06307, doi:10.1029/2005JD006977.
    • Bond, T. C., Anderson, T. L. and Campbell, D. E. 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol. 30(6), 582-600.
    • Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A. and co-authors. 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in U.S. air quality studies. Atmos. Environ. 27A(8), 1185-1201.
    • Chow, J. C., Watson, J. G., Chen, L.-W. A., Arnott, W. P., Moosmu¨ller, H. and co-authors. 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol. 38(16), 4414-4422.
    • Claquin, T., Schulz, M., Balkanski, Y. and Boucher, O. 1998. Uncertainties in assessing radiative forcing by mineral dust. Tellus 50B, 491-505.
    • Claquin, T., Schulz, M., Balkanski, Y. and Boucher, O. 1999. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. 104, 22 243-22 256.
    • Costa, M. J., Sohn, B.-J., Levizzani, V. and Silva, A. M. 2006. Radiative forcing of Asian dust determined from the synergized GOME and GMS satellite data-a case study. J. Meteorol. Soc. Japan 84, 85-95.
    • Dubovik, O., Holben, B. and Eck, T. F. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590-608.
    • Fialho, P., Hansen, A. D. A. and Honrath, R. E. 2005. Absorption coefficients by aerosols in remote areas: a new approach to decouple dust and black carbon absorption coefficients using seven-wavelength Aethalometer data. J. Aerosol Sci. 36, 267-282.
    • Hansen, A. D. A., Rosen, H. and Novakov, T. 1984. The aethalometeran instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ. 36, 191-196.
    • Hansen, A. D. A., Kapustin, V. N., Kopeikin, V. M., Gillette, D. A. and Bodhaine, B. A. 1993. Optical absorption by aerosol black carbon and dust in a desert region of central Asia. Atmos. Environ. 27(A), 2527-2531.
    • Hansen, A. D. A., Babich, P. C., Allen, G. A. and Koutrakis, P. 2000. Intercomparison of methods for the determination of aerosol “elemental” or “black” carbon in six major urban environments. In: Proceedings of the Air and Waste Management Association Annual Meeting. Salt Lake City, UT, June, 19-22.
    • Horvath, H. 1997. Experimental calibration for aerosol light absorption measurements using the integrating plate method - summary of the data. J. Aerosol Sci. 28(7), 1149-1161.
    • Kaufman, Y. J., Dubovik Karnieli, A., Blaustein, J. and Remer, L. A. 2001. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett. 28(8), 1479-1482.
    • Kirchstetter, T. W., Novakov, T. and Hobbs, P. V. 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res. 109(D21), D21208, doi:10.1029/2004JD004999. ISI:000225190500010.
    • Kojima, T., Buseck, P. R., Iwasaka, Y., Matsuki, A. and Trochkine, D. 2006. Sulfate-coated dust particles in the free troposphere over Japan. Atmos. Res. 82, 698-708.
    • Koren, I., Kaufman, Y. J., Remer, L. A. and Martins, J. V. 2004. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science, 303(5662), 1342-1345.
    • Levin, Z., Ganor, E. and Gladstein, V. 1996. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteorol. 35, 1511-523.
    • Liousse, C., Cachier, H. and Jennings, S. G. 1993. Optical and thermal measurements of black carbon aerosol content in different environments: variation of the specific attenuation crosssection, sigma. Atmos. Environ. 27A(8), 1203-1211.
    • Moosmu¨ller, H., Arnott, W. P., Rogers, C. F., Chow, J. C., Frazier, C. A. and co-authors. 1998. Photoacoustic and filter measurements related to aerosol light absorption during the northern front range air quality study (Colorado 1996/1997). J. Geophys. Res. 103(D21), 28 149- 28 157.
    • Sokolik, I. N. and Toon, O. B. 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. 104, 9423-444.
    • Watson, J. G., Chow, J. C. and Chen, L.-W. A. 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. J. Aerosol Air Quality Res. 5(1), 69-109.
    • Weingartner, E., Saatho, H., Schnaiterb, M., Streita, N. Bitnarc, B. and co-authors. 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Aerosol Sci. 34, 1445-1463.
    • Wurzler, S., Reisin, T. G. and Levin, Z. 2000. Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J. Geophys. Res. 105, 4501-512.
    • Yin, Y., Wurzler, S. and Levin, Z. 2002. Effects on precipitation and cloud optical properties. J. Geophys. Res. 107(D23), 4724, doi:10.1029/2001JD001544.
    • Zhang, X., Arimoto, R., An, Z., Chen, T., Zhu, G. and co-authors. 1993. Atmospheric trace elements over source regions for Chinese dust: concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos. Environ. 27(A), 2051-2067.
    • Zhang, X. Y., Gong, S. L., Arimoto, R., Shen, Z. X., Mei, F. M. and coauthors. 2003. Characterization and temporal variation of Asian dust aerosol from a site in the northern Chinese deserts. J. Atmos. Chem. 44, 241-257.
    • Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., Gong, S. L. and co-authors. 2008. Carbonaceous aerosol composition over various regions of China during 2006. J. Geophys. Res., doi:10.1029/2007JD009525.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from