LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hantel, Michael; Haimberger, Leopold (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Sub-gridscale processes take place throughout the global atmosphere. Yet they have been neglectedin traditional estimates of the global energy cycle on the ground that they can be treatedas molecular heat fluxes. This view may cause quantitative underestimates of the efficiency ofthe global circulation of the atmosphere. In Part I of this two-part study we revisit the classicaltheory, beginning with the local energy equations. Similar to Lorenz we introduce a barotropicreference pressure pr and define a generalized field equation for the integrand of availablepotential energy, without reference to hydrostasy. The emerging energy quantity is new in thatit comprises not only the classical correlation between efficiency factor and enthalpy but alsoan additional potential that depends upon pr. We then perform mass-averaging over the scaleof contemporaneous global models (40–400 km) and come up with averaged field energy equations,valid at the gridscale. Additional global and time-averaging of these removes all divergencesand tendencies and yields two equations for the global energy reservoirs. The availablepotential energy reservoir is fed by gridscale plus sub-gridscale generation. The kinetic energyreservoir is tapped by gridscale plus sub-gridscale dissipation. Exchange between the reservoirsis carried by both gridscale and sub-gridscale conversion terms (C<sup>grid</sup>, C<sup>sub</sup>). Generation, conversionand dissipation fluxes are complete, as compared to the approximate quantities in thetraditional formulation of the energy cycle. This approach allows to fully exploit Lorenz’soriginal concept. The gridscale equations derived will be the basis for evaluating numericallythe classical Lorenz terms plus a couple of new global conversion fluxes, notably C<sup>sub</sup>, to bepresented in Part II of this study.DOI: 10.1034/j.1600-0870.2000.520105.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arakawa, A. and Schubert, W. H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674-701.
    • Arpe, K., Brankovic, C., Oriol, E. and Speth, P. 1986. Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF. Beitr. Phys. Atmos. 59, 321-355.
    • Batchelor, G. K. 1967. An introduction to fluid dynamics. Cambridge University Press, 615 pp.
    • Bernhardt, K. 1979. Zur Frage der G u¨ltigkeit der Reynoldsschen Postulate. Zeitschr. Meteorol. 30, 361-368.
    • Boer, G. J. 1975. Zonal and eddy forms of the available potential energy equations in pressure coordinates. T ellus 27, 433-443.
    • Boer, G. J. 1976. Reply to J. Egger. T ellus 28, 379-380.
    • Cotton, W. and Anthes, R. A. 1989. Storm and cloud dynamics, vol. 44 of Int. Geophys. Ser. Academic Press, 883 pp.
    • Dutton, J. A. and Johnson, D. R. 1967. The theory of available potential energy and a variational approach to atmospheric energetics. Adv. Geophys. 12, 333-437.
    • Emanuel, K. A. 1994. Atmospheric convection. Oxford University Press, 580 pp.
    • Falk, G. and Ruppel, W. 1976. Energie und Entropie. Eine Einf u¨hrung in die T hermodynamik. Springer, 408 pp.
    • GlansdorV, P. and Prigogine, I. 1971. T hermodynamic theory of structure, stability and fluctuations. Wiley, 306 pp.
    • Haimberger, L. and Hantel, M. 2000. Implementing convection into Lorenz's global cycle, Part II: A new estimate of the conversion rate into kinetic energy. T ellus 52A, 75-92.
    • Herbert, F. 1975. Irreversible processes in the atmosphere - Part 3 (Phenomenological theory of microturbulent systems). Beitr. Phys. Atmos. 48, 1-29.
    • Hesselberg, T. 1926. Die Gesetze der ausgeglichenen atmospha¨rischen Bewegungen. Beitr. Phys. frei Atmos. 12, 141-160.
    • Kraus, E. B. and Businger, J. A. 1994. Atmosphere-ocean interaction. Oxford University Press, 362 pp.
    • Kucharski, F. 1997. On the concept of exergy and available potential energy. Quart. J. Roy. Meteor. Soc. 123, 2141-2156.
    • Leonard, A. 1974. Energy cascade in large-eddy simulations of turbulent fluid flows. In: T urbulent diVusion in environmental pollution (eds. Frenkiel, F. and Munn, R.), vol. 18A of Adv. Geophys., pp. 237-248. Academic Press.
    • Lorenz, E. N. 1955. Available potential energy and the maintenance of the general circulation. T ellus 7, 157-167.
    • Lorenz, E. N. 1967. T he nature and theory of the general circulation of the atmosphere, vol. 218.TP.115. WMO, 161 pp.
    • Margules, M. 1903. U¨ber die Energie der St u¨rme. Jahrb. k. k. Zent.-Anst. f u¨r Meteorol. und Erdmagnet. 48, 1-26.
    • Newell, R. E., Vincent, D. G., Dopplick, T. G., Ferruzza, D. and Kidson, J. W. 1970. The energy balance of the global atmosphere. In: T he global circulation of the atmosphere (ed. Corby, G. A.), pp. 42-90. London: Roy. Met. Soc.
    • Oort, A. H. 1964. On estimates of the atmospheric energy cycle. Mon. Wea. Rev. 92, 483-493.
    • Peix o´to, J. P. and Oort, A. H. 1992. Physics of climate. American Institute of Physics, 520 pp.
    • Stull, R. B. 1988. An introduction to boundary layer meteorology. Kluwer Academic Publishers, 666 pp.
    • Van Mieghem, J. 1956. The energy available in the atmosphere for conversion into kinetic energy. Beitr. Phys. Atmos. 29, 129-142.
    • Van Mieghem, J. 1973. Atmospheric energetics. Oxford Monograph on Meteorology. Clarendon Press, 306 pp.
    • Vinnichenko, N. K. 1970. The kinetic energy spectrum in the free atmosphere - one second to five years. T ellus 22, 128-166.
    • Yamada, T. and Mellor, G. 1975. A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci. 32, 2309-2329.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from