LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Magnusson, Linus; Nycander, Jonas; Källén, Erland (2009)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Ensemble prediction relies on a faithful representation of initial uncertainties in a forecasting system. Early research on initial perturbation methods tested random perturbations by adding ‘white noise’ to the analysis. Here, an alternative kind of random perturbations is introduced by using the difference between two randomly chosen atmospheric states (i.e. analyses). It yields perturbations (random field, RF, perturbations) in approximate flow balance. The RF method is compared with the operational singular vector based ensemble at European Centre for Medium Range Weather Forecasts (ECMWF) and the ensemble transform (ET) method. All three methods have been implemented on the ECMWF IFS-model with resolution TL255L40. The properties of the different perturbation methods have been investigated both by comparing the dynamical properties and the quality of the ensembles in terms of different skill scores. The results show that the RF perturbations initially have the same dynamical properties as the natural variability of the atmosphere. After a day of integration, the perturbations from all three methods converge. The skill scores indicate a statistically significant advantage for the RF method for the first 2–3 d for the most of the evaluated parameters. For the medium range (3–8 d), the differences are very small.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, J. L. 1997. The impact of dynamical constraints on the selection of initial conditions for ensemble predictions: low-order perfect model results. Mon. Wea. Rev. 125, 2969-2983.
    • Arribas, A., Robertson, K. B. and Mylne, K. R. 2005. Test of a poor man's ensemble prediction system for short-range probability forecasting. Mon. Wea. Rev. 133, 1825-1839.
    • Barkmeijer, J., van Gijzen, M. and Bouttier, F. 1998. Singular vectors and estimates of the analysis-error covariance metric. Quart. J. R. Meteorol. Soc. 124, 1695-1713.
    • Barkmeijer, J., Buizza, R. and Palmer, T. N. 1999. 3D-Var Hessian singular vectors and their potential use in ECMWF Ensemble Prediction System. Quart. J. R. Meteorol. Soc. 125, 2333-2351.
    • Barkmeijer, J., Buizza, R., Palmer, T. N., Puri, K. and Mahfouf, J.-F. 2001. Tropical singular vectors computed with linearized diabatic physics. Quart. J. R. Meteorol. Soc. 127, 685-708.
    • Bengtsson, L. K., Magnusson, L. and Ka¨lle´n, E. 2008. Independent estimations of the asymptotic variability in an ensemble forecast system. Mon. Wea. Rev. 136, 4105-4112.
    • Bishop, C. H. and Toth, Z. 1999. Ensemble transformation and adaptive mbservations. J. Atmos. Sci 56, 1748-1765.
    • Boer, G. J. 2003. Predictability as a function of scale. Atmos.-Ocean 41, 203-215.
    • Bowler, N. 2006. Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus 58A, 538-548.
    • Bowler, N., Arribas, A., Mylne, K. R., Robertson, K. B. and Beare, S. E. 2008. The MOGREPS short-range ensemble prediction system. Quart. J. R. Meteorol. Soc. 134, 703-722.
    • Buizza, R. 2008. Comparison of a 51-member low-resolution (TL399L62) ensemble with a 6-member high-resolution (TL799L91) lagged-forecast ensemble. Mon. Wea. Rev. 136, 3343-3362.
    • Buizza, R., Miller, M. and Palmer, T. 1999. Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. R. Meteorol. Soc. 125, 2887-2908.
    • Buizza, R., Houtekamer, P. L., Toth, Z., Pellerin, G., Wei, M. and coauthors. 2005. A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems. Mon. Wea. Rev. 133, 1067-1097.
    • Candille, G. and Talagrand, O. 2005. Evaluation of probabilistic prediction systems for a scalar variable. Quart. J. R. Meteorol. Soc. 131, 2131-2150.
    • Descamps, L. and Talagrand, O. 2007. On some aspects of the definition of initial conditions for ensemble prediction. Mon. Wea. Rev. 135, 3260-3272.
    • Fisher, M. and Courtier, P. 1995. Estimating the covariance matrices of analysis and forecast error in variational data assimilation, Technical Memorandum 220, ECMWF.
    • Gustafsson, N. 2007. Discussion on'4D-Var or EnKF?'. Tellus 59A, 774-777.
    • Hamill, T. H. and Whitaker, J. S. 2005. Accounting for the error due to unresolved scales in ensemble data assimilation: a comparison of different approches. Mon. Wea. Rev. 133, 3132-3147.
    • Hollingsworth, A. 1979. An experiment in Monte Carlo forecasting, In: Proceedings of Workshop on Stochastic Dynamic Forecasting, Reading, UK, ECMWF.
    • Holton, J. R. 2004. An Introduction to Dynamic Meteorology. Academic Press, London, p. 535.
    • Hoskins, B. J. and Hodges, K. I. 2002. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 59, 1041-1061.
    • Hoskins, B. J., Buizza, R. and Badger, J. 2000. The nature of singular vector growth and structure. Quart. J. R. Meteorol. Soc. 126, 1565- 1581.
    • Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H. and Mitchell, H. 1996. A system simulation approach to ensemble prediction. Mon. Wea. Rev. 124, 1225-1242.
    • Houtekamer, P. L., Mitchell, H. and Deng, X. 2008. Model error respresentation in an operational ensemble Kalman filter. Mon. Wea. Rev. in press.
    • Judd, K., Reynolds, C. A., Rosmond, T. E. and Smith, L. A. 2008. The geometry of model error. J. Atmos. Sci. 65, 1749-1772.
    • Ka¨lle´n, E. and Huang, X.-Y. 1988. The influence of isolated observations on short-range numerical weather forecasts. Tellus 40A, 324-336.
    • Leith, C. 1974. Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev. 1974, 409-418.
    • Leutbecher, M. and Palmer, T. N. 2008. Ensemble forecasting. J. Comput. Phys. 227, 3515-3539.
    • Lindzen, R. S. and Farrell, B. 1980. A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci. 37, 1648-1654.
    • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.
    • Lorenz, E. N. 1965. A study of the predictability of a 28-variable atmospheric model. Tellus 67, 321-333.
    • Lorenz, E. N. 1969. The predictability of a flow which posses many scales of motion. Tellus 21, 289-307.
    • Lorenz, E. N. 1982. Atmospheric predictability experiments with a large numerical model. Tellus 34, 505-513.
    • Magnusson, L., Ka¨lle´n, E. and Nycander, J. 2008. Initial state perturbations in ensemble forecasting. Nonlinear Processes Geophy. 15, 751-759.
    • Magnusson, L., Leutbecher, M. and Ka¨lle´n, E. 2008. Comparison between singular vectors and breeding vectors as initial perturbations of ECMWF Ensemble Prediction System. Mon. Wea. Rev. 136, 4092- 4104.
    • McLay, J. G., Bishop, C. H. and Reynolds, C. A. 2008. Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev. 136, 1093-1108.
    • Mureau, R., Molteni, F. and Palmer, T. 1993. Ensemble prediction using dynamically conditioned perturbations. Quart. J. R. Meteorol. Soc. 119, 299-323.
    • Murphy, A. H. 1973. A new vector partition of the pobability score. J. Appl. Meteorol. 12, 595-600.
    • Palmer, T. N. 1993. Extended-range atmospheric prediction and the Lorenz Model. Bull. Am. Meteorol. Soc. 74, 49-66.
    • Reinhold, B. 1986. Structural determinism of linear baroclinic waves and simple nonlinear equilibration. J. Atmos. Sci. 43, 1484-1504.
    • Reynolds, C. A., Teixeira, J. and McLay, J. G. 2008. Impact of stochastic convection on the ensemble transform. Mon. Wea. Rev. 136, 4517- 4526.
    • Roulston, M. S. and Smith, L. A. 2002. Evaluating probabilistic forecasts using information theory. Mon. Wea. Rev. 130, 1653-1660.
    • Schubert, S. D. and Suarez, M. 1989. Dynamical predictability in a simple general circulation model: average error growth. J. Atmos. Sci. 46, 353-370.
    • Szunyogh, I., Kostelich, E. J., Gyarmati, G., Kalnay, E., Hunt, B. R., and co-authors. 2008. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus 60A, 113-130.
    • Talagrand, O., Vautard, R. and Strauss, B. 1999. Evaluation of probabilistic prediction system, In: Proceedings of Workshop on Predictability, October 1997, ECMWF.
    • Talagrand, O., Candille, G. and Descamps, L. 2007. On some aspects of validation of probabilistic prediction, In: Proceedings of Workshop on Ensemble prediction, November 2007, ECMWF.
    • Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at NCEP: the generation of perturbation. Bull. Am. Meteorol. Soc. 74, 2317-2330.
    • Toth, Z. and Kalnay, E. 1997. Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev. 125, 3297-3319.
    • Trevisan, A. 1993. Impact of transient error growth on global average predictability measures. J. Atmos. Sci. 50, 1016-1028.
    • Tribbia, J. J. and Baumhefner, D. P. 1988. Estimates of the predictability of low-frequency variability with a spectral general circulation model. J. Atmos. Sci. 45, 2306-2317.
    • Vallis, K. G. 2006, Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge, p. 745.
    • Wang, X. and Bishop, C. 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 60, 1140-1158.
    • Wang, X., Bishop, C. and Julier, S. 2004. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev. 132, 1590-1605.
    • Wei, M. and Toth, Z. 2003. A new measure of ensemble performance: perturbation versus error correlation analysis (PECA). Mon. Wea. Rev. 131, 1549-1565.
    • Wei, M., Toth, Z., Wobus, R. and Zhu, Y. 2008. Initial perturbations based on the ensemble transform (ET) technique in the NCEP global ensemble forecast systems. Tellus 60A, 62-79.
    • Wilks, D. S. 1997. Resampling hypothesis tests for autocorrelated fields. J. Clim. 10, 65-82.
    • Wilks, D. S. 2006, Statistical Methods in the Atmospheric Sciences 2nd Edition. Academic Press, London, p. 627.
    • Zhang, F. 2005. Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev. 133, 2876-2893.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from