LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Aalto, Pasi; Hämeri, Kaarle; Becker, Edo; Weber, Rodney; Salm, Jaan; Mäkelä, Jyrki M.; Hoell, Claudia; O'dowd, Colin D.; Hansson, Hans-Christen; Väkevä, Minna; Koponen, Ismo K.; Buzorius, Gintautas; Kulmala, Markku (2001)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Particle concentrations and size distributions have been measured from different heights inside and above a boreal forest during three BIOFOR campaigns (14 April–22 May 1998, 27 July–21 August 1998 and 20 March–24 April 1999) in Hyytiälä, Finland. Typically, the shape of the background distribution inside the forest exhibited 2 dominant modes: a fine or Aitken mode with a geometric number mean diameter of 44 nm and a mean concentration of 1160 cm−3 and an accumulation mode with mean diameter of 154 nm and a mean concentration of 830 cm−3. A coarse mode was also present, extending up to sizes of 20 μm having a number concentration of 1.2 cm−3, volume mean diameter of 2.0 μm and a geometric standard deviation of 1.9. Aerosol humidity was lower than 50% during the measurements. Particle production was observed on many days, typically occurring in the late morning. Under these periods of new particle production, a nucleation mode was observed to form at diameter of the order of 3 nm and, on most occasions, this mode was observed to grow into Aitken mode sizes over the course of a day. Total concentrations ranged from 410–45 000 cm−3, the highest concentrations occurring on particle production days. A clear gradient was observed between particle concentrations encountered below the forest canopy and those above, with significantly lower concentrations occurring within the canopy. Above the canopy, a slight gradient was observed between 18 m and 67 m, with at maximum 5% higher concentration observed at 67 m during the strongest concentration increases.DOI: 10.1034/j.1600-0889.2001.530403.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ball, S. M., Hanson, D. R., Eisele, F. L. and McMurry, P. H. 1999. Laboratory studies of particle nucleation: initial results for H2SO44, H2O, and NH3 vapors. J. Geophys. Res. 104, 23,709-23,718.
    • Birmili, W., Stratmann, F., Wiedensohler, A., Covert, D., Russell, L. M. and Berg, O. 1997. Determination of diVerential mobility analyzer transfer functions using identical instruments in series. Aerosol Science and T echnology 27, 215-223.
    • Covert, D. S., Kapustin, V. N., Quinn, P. K. and Bates, T. S. 1992. New particle formation in the marine boundary layer. J. Geophys. Res. 97, 20,581-20,589.
    • Ha¨meri, K., Va¨keva¨, M., Aalto, P., Kulmala, M., Swietlicki, E., Seidl, W., Becker, E. and O'Dowd, C. D. 2001. Hygroscopic and CCN properties of aerosol particles in boreal forests. T ellus 53B, 359-379.
    • Ho˜ rrak, U., Salm, J. and Tammet, H. 1998. Bursts of intermediate ions in atmospheric air. J. Geophys. Res. 103, 13,909-13,915.
    • Ho˜ rrak, U., Salm, J. and Tammet, H. 2000. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J. Geophys. Res. 105, 7,9291-9302.
    • Israe¨l, H. 1970. Atmospheric electricity (Vol. I). Israe¨l Program for Scientific Translations, Jerusalem.
    • Janson, R., Rosman, K., Karlsson, A. and Hansson, H.-C. 2001. Biogenic emissions and gaseous precursors to the forest aerosol. T ellus 53B, 423-440.
    • Jokinen, V. and Ma¨kela¨, J. M. 1997. Closed-loop arrangement with critical orifice for DMA sheath/ excess flow system. J. Aerosol Sci. 28, 643-648.
    • Kulmala, M., Rannik, U¨., Pirjola, L., Dal Maso, M., Karima¨ki, J., Asmi, A., Ja¨ppinen, A., Karhu, V., Korhonen, H., Malvikko, S.-P., Puustinen, A., Raittila, J., Rommakkaniemi, S., Suni, T., Yli-Koivisto, S., Paatero, J., Hari, P. and Vesala, T. 2000. Characterization of atmospheric trace gas and aerosol concentrations at forest sites in southern and northern Finland using back trajectories. Boreal Env. Res. 5, 315-336.
    • Kulmala, M., Ha¨meri, K., Aalto, P., Ma¨kela¨, J. M., Pirjola, L., Nilsson, E. D., Buzorius, G., Rannik, U¨., Dal Maso, M., Seidl, W., HoVmann, T., Jansson, R., Hansson, H.-C., O'Dowd, C., Viisanen, Y. and Laaksonen, A. 2001. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR). T ellus 53B, 327-343.
    • Luts, A. and Salm, J. 1994. Chemical composition of small atmospheric ions near the ground. J. Geophys. Res. 99, 10,781-10,785.
    • Mohnen, V. A. 1977. Formation, nature and mobility of ions of atmospheric importance. In: Electrical processes in atmospheres (ed. H. Dolezalek and R. Reiter). Dr. Dietrich SteinkopV Verlag, Darmstadt, Germany, 1-17.
    • Ma¨kela¨, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A., Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H. and Kulmala, M. 1997. Observations of ultrfine aerosol particle formation and growth in boreal forest. Geophys. Res. L ett. 24, No. 10, 1219-1222.
    • Nilsson, E. D., Rannik, U¨., Buzorius, G., Boy, M. and Laakso, L. 2001. EVects of the continental boundary layer evolution, convection, turbulence and etntrainment on aerosol formation. T ellus 53B, 441-461.
    • O'Dowd, C. D., Davison, B., Lowe, J. A., Smith, M. H., Harrison, R. M. and Hewitt, C. N. 1997. Biogenic sulphur emissions and inferred sulphate CCN concentrations in and around Antarctica. J. Geophys. Res. 102, 12,839-12,854.
    • O'Dowd, C., McFiggans, G., Creasey, D. J., Pirjola, L., Hoell, C., Smith, M. H., Allan, B. J., Plane J. M. C., Heard, D. E., Lee, J. D., Pilling, M. J. and Kulmala, M. 1999. On the photochemical production of biogenic new particles in the coastal boundary layer. Geophys. Res. L ett. 26, 1707-1710.
    • Pirjola, L., Laaksonen, A., Aalto, P. and Kulmala, M. 1998. Sulphate aerosol formation in the Arctic boundary layer. J. Geophys. Res. 103, 8309-8322.
    • Porstend o¨rfer, J. and Soderholm, S. C. 1978. Short Communication: Particle size dependence of a condensation nuclei counter. Atmos. Envir. 12, 1805-1806.
    • Quant, F. R., Caldow, R., Sem, G. J. and Addison, T. J. 1992. Performance of condensation particle counters with three continous-flow designs. J. Aerosol Sci. 23, S405-S408.
    • Reischl, G. P., Ma¨kela¨, J. M., Karch, R. and Necid, J. 1996. Bipolar charging of ultrafine particles in the size range below 10 nm. J. Aerosol Science 27, 931-949.
    • Saros, M. T., Weber, R. J., Marti, J. J. and McMurry, P. H. 1996. Ultrafine aerosol measurement using a condensation nucleus counter with pulse height analysis. Aerosol Science and T echnology 25, 200-213.
    • Stolzenburg, M. R. 1988. An ultrafine aerosol size distribution measuring system. PhD Thesis, University of Minnesota, Minneapolis MN, USA.
    • Stolzenburg, M. R. and McMurry, P. H. 1991. An ultrafine aerosol condensation nucleus counter. Aerosol Science and T echnology 14, 48-65.
    • Tammet, H. 1970. T he aspiration method for the determination of atmospheric-ion spectra. Israe¨l Program for Scientific Translations, Jerusalem.
    • Weber R. J., McMurry, P. H., Mauldin, R. L. III, Tanner, D. J., Eisele, F. L., Clarke, A. D. and Kapustin, V. N. 1999. New particle formation in the remote troposphere: a comparison of observations at various sites. Geophys. Res. L ett. 26, 307-310.
    • Wiedensohler, A. 1988. An approximation of the bipolar charge distribution for the particles in the submicron size range. J. Aerosol. Sci. 19, 387-389.
    • Wiedensohler, A., Covert, D. S., Swietlicki, E., Aalto, P., Heintzenberg, J. and Leck, C. 1996. Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. T ellus 48B, 213-222.
    • Wiedensohler, A., Orsini, D., Covert, D. S., CoVmann, D., Cantrell, W., Havlicek, M., Brechtel, F. J., Russell, L. M., Weber, R. J., Gras, J., Hudson, J. G. and Litchy, M. 1997. Intercomparison study of the sizedependent counting eYciency of 26 condensation particle counters. Aerosol Science and T echnology 27, 224-242.
    • Winklmayr, W., Reischl, G. P., Linder, A. O. and Berner, A. 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range 1 to 1000 nm. J. Aerosol. Sci. 22, 289-296.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from