Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cautenet, G.; Coulibaly, Y.; Boutin, Ch. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
In large-scale models, an accurate calculation of energy fluxes at the lower boundary is important to ensure satisfactory predictions of the meteorological parameters. This work is performed using surface models. In this paper. various surface models. previously studied by Deardorff are tested against experimental data from the West African Monsoon Experiment 1979 in the Ivory Coast. Physical properties of the soil are assumed constant and uniform. Input variables are dry and wet bulb temperatures. wind velocity at the 2 m level, and global radiation. We compute sensible and latent heat fluxes and the surface conduction flux. A Crank-Nicholson scheme has been used with a time step of 5 min. Estimated sensible and latent heat fluxes agree well with experimental data. The order of magnitude of the difference between theoretical and experimental values is 30 W m-2 for evaporation and 20 W m-2 for sensible heat. Surface soil heat flux ie less satisfactorily calculated. which could result from properties assumed constant such as soil surface humidity. A model including the heat conduction in the soil provides the best results. The others, based on empirical formulations of surface soil heat flux, are less satisfactory. However. with a simple two-layer model. the predictions are quite acceptable.DOI: 10.1111/j.1600-0889.1985.tb00056.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Assamoi, P. 1984a. Numerical weather forecasting in western Africa: influence of sub-grid scale parametrization on forecasting efficiency. (In French: “Prevision numerique du temps en Afrique de I'Ouest: influence de la parametrisation de processus “sousmaille“ sur la performance des modeles de prevision“.) These de Doctorat es-Sciences Physiques n”. 78, Universite d'Abidjan, Ivory Coast.
    • Assamoi, P. 1984b. Numerical investigation of west African disturbances during monsoon. (In French: “Etude numerique des perturbations sur la region Ouest-Africaine en periode de mousson”.) Journal de Recherches Atrnosphtriques 2.8 1-94.
    • Blackadar. A. K. 1976. Modeling the nocturnal boundary layer. Proc. of the Third Symposium of A ! - rnospheric Turbulence, Diffusion and Air Quality. Amer. Meteorol. SOC..Boston, 46-49.
    • Budyko, M. 1. 1974. Climate and life. Academic Press. New York.
    • Carlson, T. N., Dodd. J. K., Benjamin, S. G . and Cooper, J. N. 1981. Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J . Appl. Meteorol. 20. 67-87.
    • Carslaw, H. S. and Jaeger, J. C. 1978. Conduction of heat in solids. Oxford University Press (2nd edition).
    • Coulibaly, Y. 1981. Local behaviour of heat and mass surface fluxes at several time scales in the tropical region (during WAMEX 1979). (In French: “Evolution locale a differentes echelles de temps des flux de chaleur et de masse en zone tropicale (periode WAMEX 1979)”.) These de Troisieme Cycle n o . 663. L.A.M.P.. Universite de Clermont-Ferrand, France.
    • Deardorff. J. W. 1978. Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res. 83, 1889-1903.
    • De Vries, D. A. 1966. Thermal properties of soils. In: Physics of plant enuironmenf (ed. W. R. Van Wijk). North Holland, Amsterdam, 21&235.
    • Greenhut, G . K. 1982. Stability dependance of fluxes and bulk transfer coefficients in a tropical boundary layer. Boundary Layer Meteorol. 24.253-264.
    • Hervier, R., Soulage, M. and Barthout, J. L. 1979. The L.A.M.P. automatic micrometeorological station for surface energy budget measurements. (In French: "Station micrometeorologique automatique du L.A.M.P. pour la mesure du bilan energetique du sol".) Technical report no. 24. L.A.M.P., Universite de Clermont-Ferrand, France.
    • Laval, K., Sadourny, R. and Serafini, Y. 1978. Soil surface energy and water budgets formulation in a general circulation model. (In French: "Formulation des bilans energetique et hydrologique a la surface du sol, dans un modele de circulation generale".) Reprint of the National Colloquium on "Mecanismes de Transfert d'energie et de masse entre Sol et Atmosphere" (A.S.P. Evolution des climats CNRSDGRST) (ed. F. Becker and C. Pastre). 1-40,
    • Paltridge, G. W. and Platt, L. M. R. 1978. Radiative processes in meteorology and climatology. Deuelopments in atmospheric sciences. 5. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
    • Reed, R. K. and Halpern, D. 1975. Insolation and net long-wave radiation of the Oregon coast. J. Geophys. Res. 80,839-844.
    • Rockwood, A. A. and Cox, S . K. 1978. Satellite-inferred surface albedo over northwestern Africa. J . Atmos. Sci. 35, 5 13-522.
    • Saugier, B. and Ripley, E. A. 1978. Evaluation of the aerodynamic method of determining fluxes over natural grassland. Q. J. R. Meteorol. Soc. 104, 257-270.
    • Washington, W. M. and Williamson, D. L. 1977. A description of the NCAR global circulation models. Methods Comput. 17, 1 11-1 72.
    • Zhang, D. and Anthes, R. A. 1982. A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with the SESAME-79 data. J. Appl. Meteorol. 2 1 , 1594- 1609.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from