LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Richman, Michael B. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Owing to the complex nature of eigenanalysis programming algorithms, most atmospheric science research utilizing empirical orthogonal functions (EOFs), principal component analysis (PCA), or common-factor analysis (CFA) use the “canned” computer programs on statistical packages such as EISPACK, IMSL, SAS, BMDP, etc. These programs usually encourage truncation of the eigenvector series according to some criterion to exclude noise and facilitate data reduction; the EOFs/PCs/CFs retained are then often physically interpreted (with or without further linear transformations) according to which variables have salient magnitudes. Results presented here illustrate that following this type of analysis procedure can lead to the interpretation of coefficients as being physically significant, when they are purely noise. Several checks to avoid such a pitfall are suggested.DOI: 10.1111/j.1600-0889.1988.tb00212.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baker, M. B., Caniparoli, D. and Harrison, H . 1981. An analysis of the first year of M A P 3 rain chemistry measurements. Atmos. Enairon. IS,43-55.
    • Barnston, A. G . and Livezey, R. E. 1987. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rec. 115, 1083-1 126.
    • Bartlett, M. S. 1950. Tests of significance in factor analysis. Br. J. Psych. (Stat. See.) 3, 77--85.
    • BMDP, 1981. Biomedical computer programs P-series. University of California Press, Berkeley, CA.
    • Brier, G. W. and Meltesen, G . T. 1976. Eigenvector analysis for prediction of time series. J. Appl. Meteorol. IS, 1307- 1312.
    • Cattell, R. B. 1966. The scree test for the number of factors. Multivar. Behaa. Res. I , 245-276.
    • Christensen, W. I. and Bryson, R. A. 1966. An investigation of the potential of component analysis for weather classification. Mon. Wea. Rev. 94, 697- 709.
    • Clarkson, D. B. 1979. Estimating the standard errors of rotated factor loadings by jackknifing. Psychometrika 44, 297-314.
    • Cohen, S. J . 1983. Classification of 500 m b height anomalies using obliquely rotated principal components. J. Clim. Appl. Meteorol. 22, 1975-1988.
    • Craddock, J . M. and Flood, C. R. 1969. Eigenvectors for representing the 500 m b geopotential surface over the northern hemisphere. Q. J. R. Meteorol. Soc. 95, 576-593.
    • Crawford, C. B. and Koopman, P. 1979. Note: interrater reliability of scree test and mean square ratio test of number of factors. Percept. Motor Skills 49, 223-226.
    • Dyer, T. G . J. 1975. The assignment of rainfall stations into homogeneous groups: An application of principal components analysis. Q. J . R. Meteorol. Soc. 101, 10CH)- I0 I 3.
    • EISPACK 1976. Matrix Eigensystems RoutinesEISPACK Guide. 2nd ed., Vol. 6 of Lacture Notes in Compurer Science, ed. B. T. Smith et al., SpringerVerlag, New York.
    • Gatz. D. F. 1984. Source apportionment of rain water impurities in central Illinois. Atmos. Enciron. 18, 185j5-1904.
    • Gray, B. M. 1981. On the stability of temperature eigenvector patterns. J . Climatol. I, 273--281.
    • Hakstian. A. R, Rogers, W. T. and Cattell, R. B. 1982. The behavior of number-of-factors rules with simulated data. Multiciar. Behac. Res. 17. 193-219.
    • Harman, H . H . 1976. Modern jactor analyses, 3rd edition. University of Chicago Press, Chicago, IL.
    • Harris, C. W. 1967. On factors and factor scores. Psychometrika 32, 363-379.
    • Hastenrath, S. and Wendland, W. M. 1979. O n the secular variation of storms in the tropical North Atlantic and Eastern Pacific. Tellus 31, 28- 38.
    • Hopke, P. K. 1982. Discussion: Trace element concentrations in summer aerosols in rural sites in New York State and their possible sources and seasonal variations in the composition of ambient sulfatecontaining aerosols in the New York area. Atmos. Enciron. 16, 1379.
    • Horel, J . D . 1981. A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 m b height field. Mon. Wea. Rev. 109, 2080-2092.
    • Horel, J. D. 1984. Complex principal component analysis: Theory and examples. J. Clim. Appl. Meteorol. 23, 1660-1 673.
    • IMSL 1979. International Mathematical and Statistical Laboratory, Edition 7, vol. 3, ch. 0. IMSL Publ., Houston, TX.
    • Kaiser, H . F. 1960. The application of electronic computers to factor analysis. Educ. Psych. Measur. 20, 141-151.
    • Kaiser, H . F. 1961. A note on Guttman's lower bound for the number of common factors. Br. J. Stat. Ps,ych. 14, 1-2.
    • Kaiser, H . F. 1970. A second-generation Little Jiffy. Psychometrika 35, 401-415.
    • Kaiser, H. F. and Rice, J. 1974. Little Jiffy, Mark IV. Educ. Psych. Measur. 34, 111-1 17.
    • Kalkstein, L. S. and Corrigan, P. 1986. A synoptic climatological approach for geographical analysis: assessment of sulfer dioxide concentrations. Ann. Assoc. Amer. Geogr. 76, 381-395.
    • Kendall, M. G. 1980. Multioariare analysis. Charles Griffin, High Wycomb.
    • Knuth, D. E. 1981. Semi-numerical algorithms, vol. 2, Art of computer programming. Addison-Wesley, Reading MA.
    • Ladd, J . W. and Driscoll, D. W. 1980. A comparison of objective and subjective means of weather typing: an example from Western Texas. J. Appl. Meteorol. 19, 691-704.
    • Lawley, D. N. and Manwell, A. E. 1971. Factor analysis as a staristical method, 2nd edition. Butterworth, London.
    • LeDrew, E. F. 1980. Eigenvector analysis of the vertical velocity fields over the eastern Canadian arctic. Mon. Wea. Rec. 108, 1992 -2005.
    • Lewis, T. G . and Payne, W. H. 1973. Generalized feedback shift register pseudo-random number algorithm. J. Assoc. Comput. Mach. 20, 456-468.
    • Linn, R. L. 1968. A Monte Carlo approach to the number of factors problem. Psychometrika 33, 37--71.
    • Mulaik, S . A. 1972. The foundations oj,factor analysis. McGraw Hill, New York.
    • North, G. R., Bell, T . L., Cahalan, R. F. and Moeng, F. J . 1982. Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Reo. 110, 699-706.
    • Overland, J . E. and Preisendorfer, R. W. 1982. A significance test for principal components applied to cyclone climatology. Mon. Wea. Rec. 110, 1-4.
    • Pennel, R. 1972. Routinely computable confidence intervals for factor loadings using the jackknife. Br. J. Math. Star. Psychol. 25, 107-1 14.
    • Preisendorfer, R. W., Zwiers, F. W. and Barnett, T . P. 198I. Foundations of principal component selection rules. SIO Reference Series 81-4, Scripps Institution of Oceanography, La Jolla, CA.
    • Press. W . H.,Flannery, B. P., Teukolsky, S . A. and Vetterling, W. T. 1986. Numerical recipes; the art of scient@c computing. Cambridge Univ. Press, Cambridge, England.
    • Richman, M. B. 1985. The eigentechnique, pseudorandom distributions and the interpretation of spurious signal. 9th Con5 on Prob. and Stars. in Atmos. Sciences, Virginia Beach, VA, Amer. Meteor. S o c . , Boston, MA, 262-270.
    • Richman, M. B. 1986. Rotation of principal components. J. Climatol. 6, 293-335.
    • Richman, M. B. and Lamb, P. J. 1985. Climatic pattern analysis of 3- and 7-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Clim. Appl. Meteorol. 24, 1325-1343.
    • Richman, M. B. and Lamb, P. J. 1987. Pattern analysis of growing season precipitation in southern Canada. Atmosphere-Ocean 25, 137-1 58.
    • Rummel, R. J . 1970. Applied factor analysis. Northwestern University Press, Evanston, IL.
    • Salinger, M . J . 1980. New Zealand climate: I. Precipitation patterns. Mon. Wea. Rev. 108, 1892- 1904.
    • SAS 1985. SAS Institute Inc. User's Guide: Statistics. SAS Institute Publ., C a y , NC.
    • SPSS 1979. Statistical package for the social sciences, 3rd edition. McGraw-Hill Book Co., New York, NY.
    • Storch, H. v., and Hannoschijck, G . 1985. Statistical aspects of estimated principal vectors (EOFs) based on small sample sizes. J. Clim. Appl. Meteorol. 24, 716-724.
    • Thurston, G. D. and Spengler, J. D. 1985. A multivariate assessment of meteorological influences on inhalable particle source impacts. J. Clim. Appl. Meteorol. 24, 1245-1 256.
    • Weickmann, K . M. 1983. Intraseasonal circulation and outgoing radiation modes during Northern Hemisphere winter. Mon. Wea. Rec. I l l , 1838-1858.
    • Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat. 14, 1261-1350.
    • Zwick, W. P. and Velicer, W. F. 1982. Factors influencing four rules for determining the number of components to retain. Multivar. Behav. Res. 17. 253- 269.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from