Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
For driving soil–vegetation–transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called ‘deterministic’ part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400 m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.DOI: 10.1111/j.1600-0889.2010.00466.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ament, F. and Simmer, C. 2006. Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model. Bound. Layer Meteorol. 121(1), 153- 174.
    • Arola, A. 1999. Parameterization of turbulent and mesoscale fluxes for heterogeneous surfaces. J. Atmos. Sci. 56, 584-598.
    • Avissar, R. 1991. A statistical-dynamical approach to parameterize subgrid-scale land-surface heterogeneity in climate models. Surv. Geophys. 12, 155-178.
    • Avissar, R. and Pielke, R. A. 1989. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev. 117, 2113-2136.
    • Bachner, S., Kapala, A. and Simmer, C. 2008. Evaluation of daily precipitation characteristics in the CLM and their sensitivity to parameterizations. Meteorol. Z. 17(13), 407-419.
    • Baldauf, M., Fo¨ rstner, J., Klink, S., Reinhardt, T., Schraff, C. and coauthors. 2009. Kurze Beschreibung des Lokal-Modells Ku¨ rzesfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD. Deutscher Wetterdienst, Gescha¨ftsbereich Forschung und Entwicklung, Offenbach, Germany.
    • Bertoldi, G., Kustas, W. P. and Albertson, J. D. 2008. Estimating spatial variability in atmospheric properties over remotely sensed land surface conditions. J. Appl. Meteor. Climatol. 47, 2147-2165.
    • Boe´, J., Terray, F., Habets, F. and Martin, E. 2007. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Clim. 27, 1643-1655.
    • Bo¨ hm, U., Ku¨ cken, M., Ahrens, W., Block, A., Hauffe, D. and co-authors. 2006. CLM-the Climate Version of LM: Brief description and long-term applications. Consortium of Small-Scale Modelling (COSMO)-Newsletter No. 6, Deutscher Wetterdienst, Gescha¨ftsbereich Forschung und Entwicklung, Offenbach, Germany, 225-235.
    • Dickinson, R., Henderson-Sellers, A. and Kennedy, P. 1993. Biosphere Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Tech. Note NCAR/TN387-STR, Natl. Cent. for Atmos. Res. Boulder Colorado.
    • Doms, G., Fo¨ rstner, J., Heise, E., Herzog, H.-J., Raschendorfer, M. and co-authors. 2007. A description of the nonhydrostatic regional model LM. Part II: physical parameterization. Deutscher Wetterdienst, P.O. Box 100465, 63004 Offenbach, Germany.
    • EEA, Corine Land Cover (CLC90) 2000. European Environment Agency, http://dataservice.eea.eu.int/dataservice/, Copenhagen, DK.
    • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R. and coauthors. 2007. The shuttle radar topography mission. Rev. Geophys. 45, doi:10.1029/2005RG000183.
    • Giorgi, F., Francisco, R. and Pal, J. 2003. Effects of a subgrid-scale topography and land use scheme on the simulation of surface climate and hydrology. Part I: effects of temperature and water disaggregation. J. Hydrol. 4(Part 2), 317-333.
    • Heinemann, G. and Kerschgens, M. 2005. Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int. J. Clim. 25, 379-403.
    • Naden, P. S. 1992. Spatial variability in flood estimation for large catchments: the exploitation of channel network structure, Hydrol. Sci. 37(1), 53-71.
    • Schl u¨nzen, K. H. and Katzfey, J. J. 2003. Relevance of sub-grid-scale land-use effects for mesoscale models, Tellus, 55A, 232-246.
    • Seth, A. and Giorgi, F. 1994. Simulating fluxes from heterogeneous land surfaces: explicit subgrid method employing the biosphereatmosphere transfer scheme (BATS), J. Geophys. Res. 99(D9), 18 651-18 667.
    • Seuffert, G, Gross, P., Simmer, C. and Wood, E. F. 2002. The influence of hydrologic modeling on the predicted local weather: two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model, J. Hydromet. 3(5), 505-523.
    • Singh, V. P. 1997. Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph, Hydrol. Process. 11, 1649-1669.
    • Smagorinsky, J. 1963. General circulation experiments with the primitive equations: 1. The basic experiment, Mon. Wea. Rev. 91, 99- 164.
    • Steppeler, J., Doms, G., Scha¨ttler, U., Bitzer, H., Gassmann, A. and coauthors. 2003. Meso-gamma scale forecasts using the non-hydrostatic model LM, Meteor. Atmos. Phys. 82, 75-96.
    • Venema, V., Garcia, S. G. and Simmer, C. 2010. A new algorithm for the downscaling of 3-dimensional cloud fields, Q. J. R. Meteorol. Soc. 136, 91-106, doi:10.1002/qj.535.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from