LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Martin, Rebekah; Moore, G. W. K. (2006)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
A case study of a polar low that occurred over the Labrador Sea from December 29–31, 1997 was performed using the Penn State–NCAR Mesoscale Model version 5 (MM5). The polar low was imaged by the synthetic aperture radar (SAR) on the RADARSAT-1 satellite and as a result, unique high resolution information on the polar low’s surface expression is available. This low is also of interest as it formed from a synoptic-scale low pressure system that underwent a bifurcation through an interaction with the topography of Greenland. Our model results showthat the polar lowachieved a minimum central pressure of 954 hPa with maximum 10 m wind speeds in excess of 30 ms−1. Coincident SSM/I data are in agreement with the model surface wind speed field. Sensitivity studies showed that the genesis of the low was relatively insensitive to air–sea fluxes of sensible and latent heat. The model precipitation field indicates the presence of features reminiscent of rainbands observed to occur in association with tropical cyclones, as well as frontal features typically seen in mid-latitude baroclinic systems. In addition, our model results indicate that precipitation as well as the surface wind contributes to the polar low’s surface expression as imaged by SAR.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Atlas, D. 1994. Footprints of storms on the sea - a view from spaceborne synthetic-aperture radar. J. Geophys. Res. Oceans 99, 7961-7969.
    • Atlas, D. and Black, P. G. 1994. The evolution of convective storms from their footprints on the sea as viewed by synthetic-aperture radar from space. Bull. Am. Meteorol. Soc. 75, 1183-1199.
    • Bresch, J. F., Reed, R. J. and Albright, M. D. 1997. A polar-low development over the Bering Sea: analysis, numerical simulation, and sensitivity experiments. Mon. Weather Rev. 125, 3109-3130.
    • Bromwich, D. H., Cassano, J. J., Klein, T., Heinemann, G., Hines, K. M. and co-authors. 2001. Mesoscale modeling of katabatic winds over Greenland with the Polar MM5. Mon. Weather Rev. 129, 2290-2309.
    • Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077-3107.
    • Forsythe, J. M. and Vonder Haar, T. H. 1996. A warm core in a polar low observed with a satellite microwave sounding unit. Tellus A 48A, 193-208.
    • Grell, G. A., Dudhia, J. and Stauffer, D. R. 1994. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR, Boulder, CO, USA. pp. 122.
    • Harley, D. G. 1960. Frontal contour analysis of a 'polar low'. Meteorol. Mag. 89, 146-147.
    • Harrold, T. W. and Browning, K. A. 1969. Polar low as a baroclinic disturbance. Q. J. R. Meteorol. Soc. 95, 710-723.
    • Hobbs, P. V. 1978. Organization and structure of clouds and precipitation on mesoscale and microscale in cyclonic storms. Rev. Geophys. 16, 741-755.
    • Hobbs, P. V. and Persson, P. O. G. 1982. The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones.5. The substructure of narrow cold-frontal rainbands. J. Atmos. Sci. 39, 280-295.
    • Hong, S. -Y. and Pan, H. -L. 1996. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 124, 2322-2339.
    • Hoskins, B. J., Mcintyre, M. E. and Robertson, A. W. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877-946.
    • Jameson, A. R., Li, F. K., Durden, S. L., Haddad, Z. S., Holt, B. M. and co-authors. 1997. SIR-C/X-SAR observations of rain storms. Remote Sens. Environ. 59, 267-279.
    • Janjic, Z. I. 1990. The step-mountain coordinate: physical package. Mon. Wea. Rev. 118, 1429-1443.
    • Janjic, Z. I. 1994. The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulent closure schemes. Mon. Weather Rev. 122, 927-945.
    • Katsaros, K. B., Vachon, P. W., Black, P. G., Dodge, P. P. and Uhlhorn, E. W. 2000. Wind fields from SAR: could they improve our understanding of storm dynamics. J. Hopkins APL Tech. D. 21, 86-93.
    • King, J. C. and Turner, J. 1997. Antarctic Meteorology and Climatology. Cambridge Atmospheric and Space Science Series Volume xi. Cambridge University Press, Cambridge, UK. pp. 409.
    • Kuo, Y. H. and Reed, R. J. 1988. Numerical-simulation of an explosively deepening cyclone in the eastern pacific. Mon. Weather Rev. 116, 2081-2105.
    • Kuo, Y. H., Reed, R. J. and Lownam, S. 1991. Effects of surface-energy fluxes during the early development and rapid intensification stages of 7 explosive cyclones in the western Atlantic. Mon. Weather Rev. 119, 457-476.
    • Mailhot, J., Hanley, D., Bilodeau, B. and Hertzman, O. 1996. A numerical case study of a polar low in the Labrador Sea. Tellus A 48A, 383-402.
    • Marshall, J., Dobson, F., Moore, K., Rhines, P., Visbeck, M. and coauthors. 1998. The Labrador Sea deep convection experiment. Bull. Am. Meteorol. Soc. 79, 2033-2058.
    • Melsheimer, C., Alpers, W. and Gade, M. 2001. Simultaneous observations of rain cells over the ocean by the synthetic aperture radar aboard the ERS satellites and by surface-based weather radars. J. Geophys. Res. Oceans 106, 4665-4677.
    • Moore, G. W. K. 1985. The organization of convection in narrow coldfrontal rainbands. J. Atmos. Sci. 42, 1777-1791.
    • Moore, G. W. K., Reader, M. C., York, J. and Sathiyamoorthy, S. 1996. Polar lows in the Labrador Sea - a case study. Tellus A 48A, 17-40.
    • Moore, G. W. K. and Vachon, P. W. 2002. A polar low over The Labrador Sea: interactions with topography and an upper-level potential vorticity anomaly, and an observation by RADARSAT-1 SAR. Geophys. Res. Lett. 29, 1773, DOI:10.1029/2001GL014007.
    • Moore, R. W. and Vonder Haar, T. H. 2003. Diagnosis of a polar low warm core utilizing the advanced microwave sounding unit. Weather Forecast. 18, 700-711.
    • Mourad, P. D., Thompson, D. R. and Vandemark, D. C. 2000. Extracting fine-scale wind fields from synthetic aperture radar images of the ocean surface. J. Hopkins APL Tech. D. 21, 108-115.
    • Pagowski, M. and Moore, G. W. K. 2001. A numerical study of an extreme cold-air outbreak over the Labrador Sea: sea ice, air-sea interaction, and development of polar lows. Mon. Weather Rev. 129, 47-72.
    • Parish, T. R. 1983. The influence of the Antarctic Peninsula on the windfield over the western Weddell Sea. J. Geophys. Res. Oceans Atmos. 88, 2684-2692.
    • Rasmussen, E. A., Claud, C. and Purdom, J. F. 1996. Labrador Sea polar lows. Global Atmos. Ocean Syst. 4, 275-333.
    • Rasmussen, E. A. and Turner, J. 2003. Polar Lows: Mesoscale Weather Systems in the Polar Regions 1st Edition. Cambridge University Press, Cambridge, UK. pp. 612.
    • Renfrew, I. A., Moore, G. W. K., Guest, P. S. and Bumke, K. 2002. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr. 32, 383-400.
    • Renfrew, I. A., Moore, G. W. K., Holt, T. R., Chang, S. W. and Guest, P. 1999. Mesoscale forecasting during a field program: meteorological support of the Labrador Sea deep convection experiment. Bull. Am. Meteorol. Soc. 605-620.
    • Sanders, F. and Gyakum, J. R. 1980. Synoptic-dynamic climatology of the bomb. Mon. Weather Rev. 108, 1589-1606.
    • Sikora, T. D., Friedman, K. S., Pichel, W. G. and Clemente-Colon, P. 2000. Synthetic aperture radar as a tool for investigating polar mesoscale cyclones. Weather Forecast. 15, 745-758.
    • van den Broeke, M. R. and Gallee, H. 1996. Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Q. J. R. Meteorol. Soc. 122, 1365-1383.
    • Wakimoto, R. M. and Bosart, B. L. 2000. Airborne radar observations of a cold front during FASTEX. Mon. Weather Rev. 128, 2447- 2470.
    • Wu, S. Y. and Liu, A. K. 2003. Towards an automated ocean feature detection, extraction and classification scheme for SAR imagery. Int. J. Remote Sens. 24, 935-951.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from