Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pillai, Vellara Pappukutty Pillai Mahadevan; Sreeja Sreedharan, Remadevi; Ganesan, Vedachalaiyer; Pillai Sudarsanakumar, Chellappan; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna (2015)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: visible photoluminescence; dielectric constants; micro-Raman spectra; optical constants; residual stress
Background: Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions.Methods: Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy.Results: XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions.Conclusion: Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications.Keywords: visible photoluminescence; dielectric constants; micro-Raman spectra; optical constants; residual stress Responsible Editor: Dr Raquel Verdejo, Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain.Citation: Nano Reviews 2015, 6: 26759 - http://dx.doi.org/10.3402/nano.v6.26759
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Klingshirn C. The luminescence of ZnO under high one- and two-quantum excitation. Phys Status Solidi B 1975; 71: 547 56.
    • 2. Park S-M, Ikegami T, Ebihara K, Shin P-K. Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition. Appl Surf Sci 2006; 253: 1522 7.
    • 3. Nayak PK, Yang T, Kim J, Chung S, Jeong J, Lee C, et al. Spincoated ZnO transparent conducting thin films for organic lightemitting diodes. J Phys Appl Phys 2009; 42: 035102. doi: 10. 1088/0022-3727/42/3/035102.
    • 4. Shan FK, Liu GX, Lee WJ, Shin BC. The role of oxygen vacancies in epitaxial-deposited ZnO thin films. J Appl Phys 2007; 101: 053106. doi: 10.1063/1.2437122.
    • 5. Ohshima T, Thareja RK, Ikegami T, Ebihara K. Preparation of ZnO thin films on various substrates by pulsed laser deposition. Surf Coating Tech 2003; 169 70: 517 20.
    • 6. Lupan O, Pauporte T, Chow L, Viana B, Pelle F, Ono LK, et al. Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 2010; 256: 1895 907.
    • 7. Alim KA, Fonoberov VA, Shamsa M, Balandin AA. MicroRaman investigation of optical phonons in ZnO nanocrystals. J Appl Phys 2005; 97: 124313. doi: 10.1063/1.1944222.
    • 8. Lu JG, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y. Junction properties of nitrogen-doped ZnO thin films. Phys Stat Sol C 2008; 5: 3088 90. doi: 10.1002/pssc.200779171.
    • 9. Lee Y-C, Hu S-Y, Water W, Huang Y-S, Yang M-D, Shen J-L, et al. Improved optical and structural properties of ZnO thin films by rapid thermal annealing. Solid State Comm 2007; 143: 250 4.
    • 10. Xu L, Shi L, Li X. Preparation of nanocone ZnO thin film and its aging effect of photoluminescence. Appl Surf Sci 2009; 255: 5957 60.
    • 11. de Posada E, Tobin G, McGlynn E, Lunney JG. Pulsed laser deposition of ZnO and Mn-doped ZnO thin films. Appl Surf Sci 2003; 208 9: 589 93.
    • 12. Heo YW, Ip K, Pearton SJ, Norton DP, Budai JD. Growth of ZnO thin films on c-plane Al2O3 by molecular beam epitaxy using ozone as an oxygen source. Appl Surf Sci 2006; 252: 7442 8.
    • 13. Smirnov M, Baban C, Rusu GI. Structural and optical characteristics of spin-coated ZnO thin films. Appl Surf Sci 2010; 256: 2405 8.
    • 14. Tan ST, Chen BJ, Sun XW, Fan WJ, Kwok HS, Zhang XH, et al. Blue shift of optical band gap in ZnO thin films grown by metalorganic chemical-vapor deposition. J Appl Phys 2005; 98: 013505. doi: 10.1063/1.1940137.
    • 15. Lehraki N, Aida MS, Abed S, Attaf N, Attaf A, Poulain M. ZnO thin films deposition by spray pyrolysis: influence of precursor solution properties. Curr Appl Phys 2012; 12: 1283e1287. doi: 10.1016/j.cap.2012.03.012.
    • 16. Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, et al. Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Physica B 2008; 403: 3326 30.
    • 17. Vinodkumar R, Lethy KJ, Beena D, Detty AP, Navas I, Nayar UV, et al. Effect of ITO buffer layers on the structural, optical and electrical properties of ZnO multilayer thin films prepared by pulsed laser deposition technique. Sol Energ Mater Sol Cell 2010; 94: 68 74.
    • 18. Vinodkumar R, Lethy KJ, Beena D, Satyanarayana M, Jayasree RS, Ganesan V, et al. Effect of thermal annealing on the structural and optical properties of nanostructured zinc oxide thin films prepared by pulsed laser ablation. Sol Energ Mater Sol Cell 2009; 93: 74 8.
    • 19. Vinodkumar R, Navas I, Chalana SR, Gopchandran KG, Ganesan V, Philip R, et al. Highly conductive and transparent laser ablated nanostructured Al: ZnO thin films. Appl Surf Sci 2010; 257: 708 16.
    • 20. Vinodkumar R, Navas I, Porsezian K, Ganesan V, Unnikrishnan NV, Mahadevan Pillai VP. Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition. Spectrochim Acta Mol Biomol Spectros 2014; 118: 724 32.
    • 21. Deng H, Ressel JJ, Lamb RN, Jiang B, Li Y, Zhou XY. Microstructure control of ZnO thin films prepared by single source chemical vapor deposition. Thin Solid Films 2004; 458: 43 6. doi: 10.1016/j.tsf.2003.11.288.
    • 22. Fujimura N, Nishihara T, Goto S, Xu J, Ito T. Control of preferred orientation for ZnOx films: control of self texture. J Cryst Growth 1993; 130: 269 79.
    • 23. Culity BD. Elements of X-ray diffraction. Reading, MA: Addison-Weseley; 1978, p. 102.
    • 24. Mohantya P, Kima B, Park J. Synthesis of single crystalline europium-doped ZnO nanowires. Mater Sci Eng B 2007; 138: 224 7.
    • 25. Guoqiang Q, Guanglei Z, Dongchun L, Shimin L. Lattice and internal relaxation of ZnO thin film under in-plane strain. Thin Solid Films 2010; 519: 378 84.
    • 26. Puchert MK, Timbrell PY, Lamb RN. Post deposition annealing of radio frequency magnetron sputtered ZnO films. J Vac Sci Tech 1996; 14: 2220. doi: 10.1116/1.580050.
    • 27. Illyaskutty N, Sreedhar S, Kohler H, Philip R, Rajan V, Mahadevan Pillai VP. ZnO-modified MoO3 nano-rods, -wires, -belts and -tubes: photophysical and nonlinear optical properties. J Phys Chem C 2013; 117; 7818 29. doi: 10.1021/ jp311394y.
    • 28. Li YF, Yao B, Lu YM, Cong CX, Zhang ZZ, Gai YQ, et al. Characterization of biaxial stress and its effect on optical properties of ZnO thin films. Appl Phys Lett 2007; 91: 021915.
    • 29. Mohanty BC, Jo YH, Yeon DH, Choi IJ, Cho YS. Stressinduced anomalous shift of optical band gap in ZnO: Al thin films. Appl Phys Lett 2009; 95: 062103. doi: 10.1063/1.3202399.
    • 30. Srikant V, Clarke DR. Optical absorption edge of ZnO thin films: the effect of substrate. J Appl Phys 1997; 81: 6357 64. doi: 10.1116/1.580050.
    • 31. Malek MF, Mamat MH, Khusaimi Z, Sahdan MZ, Musa MZ, Zainun AR, et al. Sonicated sol gel preparation of nanoparticulate ZnO thin films with various deposition speeds: the highly preferred c-axis (002) orientation enhances the final properties. J Alloy Comp 2014; 582: 12 21.
    • 32. Fateley WG, Dollish FR, Mc Devitt NT, Bentley FF. Infrared and Raman selection rules for molecular and Lattice vibrations the correlation method. New York: Wiley-Interscience; 1972.
    • 33. Zeferino RS, Flores MB, Pal U. Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys 2011; 109: 014308. doi: 10.1063/1.3530631.
    • 34. Alim KA, Fonoberov VA, Shamsa M, Balandin AA. MicroRaman investigation of optical phonons in ZnO nanocrystals. J Appl Phys 2005; 97: 124313.
    • 35. Salman KA, Omar K, Hassan Z. Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating. Sol Energ 2012; 86: 541 7.
    • 36. Koyano M, Quocbao P, Thanbbinh LT, Hongha L, Ngoclong N, Katayama S. Photoluminescence and Raman spectra of ZnO thin films by charged liquid cluster beam technique. Phys Status Solidi 2002; 193: 125 31.
    • 37. Chen SJ, Liu YC, Lu YM, Zhang JY, Shen DZ, Fan XW. Photoluminescence and Raman behavior of ZnO nanostructures with different morphologies. J Cryst Growth 2006; 289: 55 8.
    • 38. Zhaochun Z, Baibiao H, Yongqin Y, Deliang C. Electrical properties and Raman spectra of undoped and Al-doped ZnO thin films by metalorganic vapor phase epitaxy. Mater Sci Eng B 2001; 86: 109 12.
    • 39. Zhang B, Zhang X-T, Gong H-C, Wu Z-S, Zhou S-M, Du Z-L. Ni-doped zinc oxide nanocombs and phonon spectra properties. Phys Lett 2008; 372: 2300 3.
    • 40. Zhang T, Zeng Y, Fan HT, Wang LJ, Wang R, Fu WY, et al. Synthesis, optical and gas sensitive properties of large-scale aggregative flowerlike ZnO nanostructures via simple route hydrothermal process. J Phys Appl Phys 2009; 42: 045103. doi: 10.1088/0022-3727/42/4/045103.
    • 41. Lupan O, Pauporte T, Viana B, Aschehoug P, Ahmadi M, Cuenya BR, et al. Eu-doped ZnO nanowire arrays grown by electrodeposition. Appl Surf Sci 2013; 282: 782 8.
    • 42. Huang Y, Liu M, Li Z, Zeng Y, Liu S. Raman spectroscopy study of ZnO-based ceramic films fabricated by novel sol-gel process. Mater Sci Eng B 2003; 97: 111 16.
    • 43. Bundesmann C, Ashkenov N, Schubert M, Spemann D, Butz T, Kaidashev EM, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett 2003; 83: 1974. doi: 10.1063/1.1609251.
    • 44. Scepanovic M, Srec´kovic T, Vojisavljevic K, Ristic MM. Modification of the structural and optical properties of commercial ZnO powder by mechanical activation. Sci Sinter 2006; 38: 169 75. doi: 10.2298/SOS0602169S.
    • 45. Du CL, Gu ZB, Lu MH, Wang J, Zhang ST, Zhao J, et al. Raman spectroscopy of (Mn, Co)-codoped ZnO films. J Appl Phys 2006; 99: 123515. doi: 10.1063/1.2208298.
    • 46. Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J Phys E Sci Instrum 1983; 16: 12 14.
    • 47. Lethy KJ, Pandya S, Beena D, Vinodkumar R, Sathe V, Mahadevan Pillai VP. Transparent and low resistive nanostructured laser ablated tungsten oxide thin films by nitrogen doping: II.Substrate temperature. J Phys D Appl Phys 2009; 42: 185407. doi: 10.1088/0022-3727/42/18/185407.
    • 48. Bose RJ, Kumar RV, Sudheer SK, Reddy VR, Ganesan V, Mahadevan Pillai VP. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films. J Appl Phys 2012; 112: 114311. doi: 10.1063/1.4768206.
    • 49. Tan ST, Chen BJ, Sun XW, Fan WJ, Kwok HS, Zhang XH, et al. Blue shift of optical band gap in ZnO thin films grown by metalorganic chemical-vapor deposition. J Appl Phys 2005; 98: 013505. doi: 10.1063/1.1940137.
    • 50. Tauc J. Optical properties of amorphous semiconductors. Amorphous and liquid semiconductors. London: Plenum; 1974.
    • 51. Suchea M, Christoulakis S, Kartharakis M, Vidakis N, Koudoumas E. Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films 2009; 517: 4303 6.
    • 52. Huang H, Ou Y, Xu S, Fang G, Li M, Zhao XZ. Properties of Dy-doped ZnO nanocrystalline thin films prepared by pulsed laser deposition. Appl Surf Sci 2008; 254: 2013 16.
    • 53. Ziabari AA, Rozati SM. Carrier transport and bandgap shift in n-type degenerate ZnO thinfilms: the effect of bandedge nonparabolicity. Physica B 2012; 407: 4512 17.
    • 54. Kim CE, Moon P, Kim S, Myoung J-M, Jang HW, Bang J, et al. Effect of carrier concentration on optical bandgap shift in ZnO:Ga thin films. Thin Solid Films 2010; 518: 6304 7.
    • 55. Lethy KJ, Beena D, Mahadevan Pillai VP, Ganesan V. Bandgap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications. J Appl Phys 2008; 104: 033515.
    • 56. Sreeja R, John J, Aneesh PM, Jayaraj MK. Linear and nonlinear optical properties of luminescent ZnO nanoparticles embedded in PMMA matrix. Optic Comm 2010; 283: 2908 13.
    • 57. Burstein E. Anomalous optical absorption limit in InSb. Phys Rev 1954; 93: 632.
    • 58. Chen Y, Bagnall DM, Koh HJ, Park KT, Hiraga K, Zhu ZQ, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: growth and characterization. J Appl Phys 1998; 84: 3912 18. doi: 10.1063/1.368595.
    • 59. Khan MAM, Khan MW, Alhoshan M, AlSalhi MS, Aldwayyan AS. Influences of Co doping on the structural and optical properties of ZnO nanostructured. Appl Phys A 2010; 100: 45 51. doi: 10.1007/s00339-010-5840-8.
    • 60. Peng X, Xu J, Zang H, Wang B, Wang Z. Structural and Pl properties of Cu doped ZnO films. J Lumin 2008; 128: 297 300.
    • 61. Lin B, Fu Z, Jia Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 2001; 79: 943.
    • 62. Vanhensden K, Seager CH, Warren WL, Tallant DR, Voigt JA. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl Phys Lett 1996; 68: 403. doi: 10.1063/ 1.116699.
    • 63. Wei XQ, Man BY, Liu M, Xue CS, Zhuang HZ, Yang C. Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Physica B 2007; 388: 145 52.
    • 64. Sun YM. PhD. Thesis, University of Science and Technology of China, July 2000.
    • 65. Cao B, Cai W, Zeng H, Duan G. Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates. J Appl Phys 2006; 99: 073516. doi: 10.1063/1.2188132.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from