Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kimura, Noriaki; Wakatsuchi, Masaaki (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
The seasonal variability of sea-ice cover in the Southern Ocean is examined using daily sea-ice concentration and ice velocity products for 2003–2009, derived from Advanced Microwave Scanning Radiometer for EOS (AMSR-E) data. This study quantitatively shows the contribution of (1) ice production/reduction within the sea ice, (2) ice production/reduction at the sea-ice edge and (3) zonal ice transport to the seasonal change of sea-ice area. Area of greatest ice production occurs along the coast of Ross Sea and East Antarctica from March to September. The contribution of zonal transport to the seasonal change of ice area is one order magnitude smaller than local ice production/reduction. Clear regional and seasonal differences are found in the large-scale processes named above. Generally, ice area increases due to ice production, both at the ice edge and within the pack in the autumn and winter. The most significant ice production at the ice edge occurred in the Weddell Sea; the ice production provides 56% of total increase of ice cover in this area. In contrast, moderate ice melting occurs at the ice edge through almost all months in the Indian Ocean sector.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baba, K., Minobe, S., Kimura, N. and Wakatsuchi, M. 2006. Intraseasonal variability of sea-ice concentration in the Antarctic with particular emphasis on wind effect. J. Geophys. Res. 111, C12023, doi:10.1029/2005JC003052.
    • Cavalieri, D. J., Parkinson, C. L. and Vinnikov, K. Y. 2003. 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett. 30, 1970, doi:10.1029/2003GL018031.
    • Cavalieri, D. J., Markus, T., Hall, D. K., Gasiewski, A. J., Klein, M. and co-authors. 2006. Assessment of EOS Aqua AMSR-E Arctic Sea Ice Concentrations Using Landsat-7 and Airborne Microwave Imagery. IEEE Trans. Geosci. Remote Sens. 44, 3057-3069.
    • Chen, D. and Yuan, X. 2004. A Markov model for seasonal forecast of Antarctic sea ice. J. Clim. 17, 3156-3168.
    • Comiso, J. C. 2002. A rapidly declining Arctic perennial ice cover. Geophys. Res. Lett. 29, 1956, doi:10.1029/2002GL015650.
    • Comiso, J. C. and Nishio, F. 2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. 113, C02S07, doi:10.1029/2007JC004257.
    • Doble, M. J. 2009. Simulating pancake and frazil ice growth in the Weddell Sea: a process model from freezing to consolidation. J. Geophys. Res. 114, C09003, doi:10.1029/2008JC004935.
    • Eisen, O. J. and Kottmeier, C. 2000. On the importance of leads in sea ice to the energy balance and ice formation in the Weddell Sea. J. Geophys. Res. 105, 14 045-14 060.
    • Emery, W. J., Fowler, C. W., Hawkins, J. and Preller, R. H. 1991. Fram Strait satellite image-derived ice motion. J. Geophys. Res. 96, 4751-4768.
    • Emery, W. J., Fowler, C. W. and Maslanik, J. A. 1997. Satellite derived maps of Arctic and Antarctic sea ice motion: 1988 to 1994. Geophys. Res. Lett 24, 897-900.
    • Enomoto, H. and Ohmura, A. 1990. The influences of atmospheric halfyear cycle on the sea ice extent in the Antarctic. J. Geophys. Res. 95, 9497-9511.
    • Fichefet, T. and Maqueda, M. A. M. 1997. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. 102, 12 609-12 646.
    • Geiger, C. A. and Drinkwater, M. R. 2005. Coincident buoy- and SAR-derived surface fluxes in the western Weddell Sea during Ice Station Weddell 1992. J. Geophys. Res. 110, C04002, doi:10.1029/2003JC002112.
    • Geiger, C. A. and Perovich, D. K. 2008. Springtime ice motion in the western Antarctic Peninsula region. Deep-Sea Res. 55, 338-350.
    • Gill, A. E. 1973. Circulation and bottom water production in the Weddell Sea. Deep-Sea Res. 20, 111-140.
    • Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C., Parkinson, C. L. and co-authors. 1992. Arctic and Antarctic sea ice, 1978-1987: satellite passive-microwave observations and analyses. NASA Spec. Publ. 511.
    • Gordon, A. L., Martinson, D. G. and Taylor, H. W. 1981. The winddriven circulation in the Weddell-Enderby basin. Deep Sea Res. 28, 151-163.
    • Haas, C., Gerland, S., Eicken, H. and Miller, H. 1997. Comparison of seaice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device. Geophysics 62, 749-757.
    • Heil, P., Fowler, C. W., Maslanik, J. A., Emery, W. J. and Allison, I. 2001. A comparison of East Antarctic sea-ice motion derived using drifting buoys and remote sensing. Ann. Glaciol. 33, 139-144.
    • Jacobs, S. S. and Comiso, J. C. 1997. Climate variability in the Amundsen and Bellingshausen Sea. J. Clim. 10, 697-709.
    • Jacobs, S. S. and Giulivi, C. F. 2010. Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J. Clim. 23, 4508-4524.
    • Kimura, N. 2004. Sea ice motion in response to surface wind and ocean current in the Southern Ocean. J. Meteor. Soc. Japan 82, 1223- 1231.
    • Kimura, N. 2007. Mechanisms controlling the temporal variation of the sea ice edge in the Southern Ocean. J. Oceanogr. 63, 685- 694.
    • Kimura, N. and Wakatsuchi, M. 2001. Mechanisms for the variation of sea-ice extent in the Northern Hemisphere. J. Geophys. Res. 106, 31 319-31 331.
    • Kimura, N. and Wakatsuchi, M. 2004. Increase and decrease of sea ice area in the Sea of Okhotsk: ice production in coastal polynyas and dynamic thickening in convergence zones. J. Geophys. Res. 109, C09S03, doi:10.1029/2003JC001901.
    • King, J. C., Doble, M. J. and Holland, P. R. 2010. Analysis of a rapid sea ice retreat event in the Bellingshausen Sea. J. Geophys. Res. 115, C12030, doi:10.1029/2010JC006101.
    • Kusahara, K., Hasumi, H. and Tamura, T. 2010. Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. J. Geophys. Res. 115, C10006, doi:10.1029/2010JC006133.
    • Markus, T. and Cavalieri, D. J. 2000. An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens. 38, 1387-1398.
    • Marsland, S. J., Bindoff, N. L., Williams, G. D. and Budd, W. F. 2004. Modeling water mass formation in the Mertz Glacier Polynya and Ade´lie Depression, East Antarctica. J. Geophys. Res. 109, C11003, doi:10.1029/2004JC002441.
    • Massom, R. A., Stammerjohn, S. E., Lefebvre, W., Harangozo, S. A., Adams, N., and co-authors. 2008. West Antarctic Peninsula sea ice in 2005: extreme ice compaction and ice edge retreat due to strong anomaly with respect to climate. J. Geophys. Res. 113, C02S20, doi:10.1029/2007JC004239.
    • Melling, H. and Riedel, D. A. 1995. The underside topography of sea ice over the continental shelf of the Beaufort Sea in the winter of 1990. J. Geophys. Res. 100, 13 641-13 653.
    • Melling, H. and Riedel, D. A. 1996. Development of seasonal pack ice in the Beaufort Sea during the winter of 1991-1992: a view from below. J. Geophys. Res. 101, 11 975-11 991.
    • Nihashi, S., Ohshima, K. I., Jeffries, M. O. and Kawamura, T. 2005. Sea-ice melting processes inferred from ice-upper ocean relationships in the Ross Sea, Antarctica.. J. Geophys. Res. 110, C02002, doi:10.1029/2003JC002235.
    • Ninnis, R. M., Emery, W. J. and Collins, M. J. 1986. Automated extraction of pack ice motion from Advanced Very High Resolution Radiometer imagery. J. Geophys. Res. 91, 10 725-10 734.
    • Orsi, A. H., Johnson, G. C. and Bullister, J. L. 1999. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 43, 55-109.
    • Parkinson, C. L. 1992. Spatial patterns of increases and decreases in the length of the sea ice season. J. Geophys. Res. 97, 14 377-14 388.
    • Parkinson, C. L. 1994. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986. J. Geophys. Res. 99, 16 327-16 339.
    • Rintoul, S. R. 1998. On the origin and influence of Ade´lie Land Bottom Water, in Ocean, Ice and Atmosphere: interactions at Antarctic Continental Margin. In: Ocean, Ice and Atmosphere: Interactions at Antarctic Continental Margin. Antarct. Res. Ser. Volume 75 (eds. S. S. Jacobs and R. Weiss), AGU, Washington, DC., 151-171.
    • Sto¨ssel, A. and Markus, T. 2004. Using satellite-derived ice concentration to represent Antarctic coastal polynyas in ocean climate models. J. Geophys. Res. 109, C02014, doi:10.1029/2003JC001779.
    • Stroeve, J. C., Serreze, M. C., Fetterer, F., Arbetter, T., Meier, W., and coauthors. 2005. Tracking the Arctic's shrinking ice cover: Another extreme September minimum in 2004. Geophys. Res. Lett. 32, L04501, doi:10.1029/2004GL021810.
    • Tamura, T., Ohshima, K. I. and Nihashi, S. 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 35, L07606, doi:10.1029/2007GL032903.
    • Toyota, T., Kawamura, T., Ohshima, K. I., Shimoda, H. and Wakatsuchi, M. 2004. Thickness distribution, texture and stratigraphy, and a simple probabilistic model for dynamic thickening of sea ice in the southern Sea of Okhotsk. J. Geophys. Res. 109, C06001, doi:10.1029/2003JC002090.
    • Vinnikov, K. Y., Cavalieri, D. J. and Parkinson, C. L. 2006. A model assessment of satellite observed trends in polar sea ice extents. Geophys. Res. Lett. 33, L05704, doi:10.1029/2005GL025282.
    • Worby, A. P., Griffin, P. W., Lytle, V. I. and Massom, R. A. 1999. On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic. Cold Reg. Sci. Technol. 29, 49-58.
    • Worby, A. P., Jeffries, M. O., Weeks, W. F., Morris, K. and Jana, R. 1996. The thickness distribution of sea ice and snow cover during late winter in the Bellingshausen and Amundsen Seas, Antarctica. J. Geophys. Res. 101, 28 441-28 455.
    • Wu, X., Budd, W. F. and Allison, I. 2003. Modeling the impact of persistent Antarctic polynyas with an atmosphere-sea-ice general circulation model. Deep-Sea Res. II 50, 1357-1372.
    • Zwally, H. J., Comiso, J. C., Parkinson, C. L., Cavalieri, D. J. and Gloersen, P. 2002. Variability of Antarctic sea ice 1979-1988. J. Geophys. Res. 107, 16 327-16 339.
    • Zwally, H. J., Yi, D., Kwok, R. and Zhao, Y. 2008. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. 113, C02S15, doi:10.1029/2007JC004284.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from