Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cathala, M. -L.; Pailleux, J.; Peuch, V. -H. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The quantity and variety of atmospheric measurements of chemical constituents are strongly increasing,both for in situ and remote-sensing observing systems. This is an incentive to develop data assimilationschemes for atmospheric chemistry models, in the perspective of building realistic three-dimensionaltime-dependent distributions of observed and chemically related non-observed compounds. Sequentialdata assimilation experiments within the global Chemistry and Transport Model MOCAGE have beenconducted, in the perspective of using the MOZAIC database and meteorological analyses to drivea global simulation of ozone and related tracers, focussing specially on the upper troposphere–lowerstratosphere; the chemistry and dynamics in this region of the atmosphere are of great environmentalinterest, yet they are currently very difficult to model. Assimilation of subsonic flight-level observationsof ozone is anticipated to provide a significant contribution to improve numerical simulations. Resultsobtained with two different sequential data assimilation schemes are presented. The experiments havebeen set up on an 8-d period in February 1997. The “non-local” data assimilation technique appearspreferable to the “local” technique tested, since the benefits of assimilation for the former appear toremain for longer, possibly up to 3–4 d in the model integration after the data assimilation phase.DOI: 10.1034/j.1600-0889.2003.00002.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bergthorsson, P. and Do¨o¨s, B. R. 1955. Numerical weather map analysis. Tellus 7, 329-340.
    • Courtier, P., Andersson, E., Heckley, W., Pailleux, J., Vasiljelic, D., Hamrud, M., Hollingsworth, A., Rabier, F. and Fisher, M. 1998. The ECMWF implementation of three dimensional variational assimilation (3D-VAR). Part I: Formulation, Q. J. R. Meteorol. Soc. 124, 1783-1807.
    • Cressman, G. 1959. An operational objective analysis system. Mon. Wea. Rev. 87, 367-374.
    • Lary, D. J., Chipperfield, M. P., Pyle, J. A., Noton, W. A. and L. P. 1995. Three-dimensional tracer initialization and general diagnostics using equivalent PV latitude-potentialtemperature coordinates. Q. J. R. Meteorol. Soc. 121, 187- 210.
    • Law, K. S., Plantevin, P.-H., Thouret, V., Marenco, A., Asman, W. A. H., Lawrence, M., Crutzen, P. J., Mu¨ller, J.-F., Hauglustaine, D. and Kanakidou, M. 2000. Comparison between global Chemistry-Transport Models results and measurements of ozone and water vapour by Airbus inservice aircraft (MOZAIC) data. J. Geophys. Res.105, D1, 1503-1525.
    • Lefe`vre, F., Brasseur, G. P., Folkins, I., Smith, A. K. and Simon, P. 1994.. Chemistry of the 1991-1992 stratospheric winter : three-dimensional model simulations. J. Geophys. Res.99, D4, 8183-8195.
    • Lefe`vre, F., Figarol, F., Carslaw, K. S. and Peter, T. 1998. The 1997 Arctic ozone depletion quantified from threedimensional model simulations. Geophys. Res. Lett. 25, 2425-2428.
    • Lorenc, A. C. 1988. Optimal nonlinear objective analysis. Q. J. R. Meteorol. Soc. 114, 205- 240.
    • Marenco, A., Thouret, V., Ne´de´lec, P., Smit, H., Helten, M., Kley, D., Karcher, F., Simon, P., Law, K. S., Pyle, J. A., Poschmann, G., Von Wedre, R., Hume, C. and Cook, T. 1998. Measurements of ozone and water vapour by Airbus in-service aircraft : the MOZAIC airbone program. J. Geophys. Res. 103 (D19), 25631-25642.
    • Peuch, V.-H., Amodei, M., Barthet, T., Cathala, M.-L., Josse, B., Michou, M. and Simon, P. 1999. MOCAGE: Mode`le de Chimie Atmosphe´rique a` Grande Echelle. In: Actes des Ateliers de Mode´lisation de l Atmosphe`re 1999. Me´te´oFrance, Centre National de Recherches Me´te´orologiques, 33-36.
    • Plantevin, P.-H. 2000. The oxydizing capacity of the troposphere. PhD Thesis, University of Cambridge, PhD.23417.
    • Riisho¨jgaard, L. P. 1996. On four-dimensional variational assimilation of ozone data in weather prediction models. Q. J. R. Meteorol. Soc. 122, 1545-1571.
    • Stoffelen, A. and Eskes, H. (eds.) 1999. SODA EU project final report available from KNMI, postbus 201, 3730 AE de Bilt, the Netherlands; http://www.knmi.nl/soda.
    • WMO (World Meteorological Organization) 1998. Scientific assessment of ozone depletion, Global Ozone Research and Monitoring Project, report no . 44, WMO, Switzerland.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from