LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Treydte, Kerstin; Schleser, Gerhard H.; Schweingruber, Fritz H.; Winiger, Matthias (2001)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Few stable carbon isotope studies exist from high mountain regions which consider both climatological and ecological influences. This study is the first presenting δ13C tree ring records from the subalpine vegetation belt of the European Alps (Lötschental, Switzerland). Pooled late wood samples from several trees (Picea abies) per site were used for studies of spatial site comparisons with respect to altitude (upper timberline/valley floor), exposure (N/S) and soil moisture (dry/moist). This investigation aims to assess how much these site conditions influence the climatic signal of δ13C. The δ13C site records (1946–1995 AD, late wood cellulose) show a decreasing long-term trend reflecting the atmospheric δ13C decrease during this period. We apply a new method for the correction of this anthropogenically induced CO2 trend which considers changes in the atmospheric δ13C source value and plant physiological reaction due to changes in the partial pressure of atmospheric CO2. The δ13C relationship to all investigated months' climatic parameters (temperature, precipitation, relative air humidity) was found to be very strong with highest correlations in July/August, the time of late wood development (maximum rT=0.74, rPPT=−0.75, rRH=−0.79). In contrast to tree ring width and density studies the observed temperature signal is not related to the altitude of the sample sites. The precipitation signal extracted from the carbon isotope time series increases with decreasing altitude and it remains strong at the upper timber line. This indicates the suitability of this isotope proxy for reconstruction of atmospheric humidity. Single extreme events (pointer years) provide stronger and more uniform reactions for dry–warm than for cool–humid summer conditions. Furthermore, the sites with moderately dry or moist soil conditions react more strongly and consistently than the extremely dry and moist sites at high elevation. Site exposure influences the absolute δ13C values (S-exposure high versus N-exposure low), but does not necessarily obscure the climatic signal of the stable isotope records.DOI: 10.1034/j.1600-0889.2001.530505.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, W. T., Bernasconi, S. M. and McKenzie, J. A. 1998. Oxygen and carbon isotopic record of climatic variability in tree ring cellulose (Picea abies): an example from central Switzerland (1913-1995). J. Geophys. Res. 103/D24, 31 625-31 636.
    • Baillie, M. G.L.and Pilcher, J. R. 1973. A simple cross dating programm for tree-ring research. T ree-Ring Bull. 33, 7-14.
    • Becker, B., Kromer, P. and Trimborn, P. 1991. A stableisotope tree-ring timescale of late Glacial/Holocene boundary. Nature 353, 647-649.
    • Beniston, M., Rebetez, M., Giorgi, F. and Marinucci, M. R. 1994. An analysis of regional climate change in Switzerland. T heor. Appl. Climatol. 49, 135-159.
    • Borella, S., Leuenberger, M., Saurer, M. and Siegwolf, R. 1998. Reducing uncertainties in d13C analysis of tree rings: Pooling, milling, and cellulose extraction. J. Geophys. Res. 103, 19 519-19 526.
    • Cook, E. R. and Kairiukstis, L. A. (eds) 1990. Methods in dendrochronology. Dordrecht.
    • Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim. Cosmochim. Acta 12, 133-149.
    • Cropper, R. 1979. Tree-ring skeleton plotting by computer. T ree Ring Bull. 39, 47-59.
    • Edwards, T. W. D., Graf, W., Trimborn, P., Stichler, W., Lipp, J. and Payer, H. D. 2000. d13C response surface resolves humidity and temperature signals in trees. Geochim. Cosmochim. Acta 64, 161-167.
    • Ellenberg, H. 1996. Vegetation Mitteleuropas mit den Alpen in o¨kologischer, dynamischer und historischer Sicht. Ulmer Verlag, Stuttgart.
    • Esper, J. 2000. Long term tree-ring variations in Junipers at the upper timberline in the Karakorum (Pakistan). Holocene 10, 253-260.
    • Esper, J., Schweingruber, F. H. and Winiger, M. 2001. 1300 Years of climate history for Western Central Asia inferred from tree rings. Holocene (accepted).
    • Farquhar, G. D., O'Leary, M. H. and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austr. J. Plant Physiol. 9, 121-137.
    • Feng, X. H. and Epstein, S. 1995. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochim. Cosmochim. Acta 59, 2599-2609.
    • Feng, X. H. 1999. Trends in intrinsic water use eYciency of natural trees for the past 100-200 years: A response to atmospheric CO2 concentration. Geochim. Cosmochim. Acta 63, 1891-1903.
    • Francey, R. J. 1981. Tasmanian tree rings belie suggested anthropogenic 13C/12C trends. Nature 290, 232-235.
    • Francey, R. J., Tans, P., Allison, C. E., Enting, I. G., White, J. W.L. and Trolier, M. 1995. Changes in oceanic and terrestrial carbon dioxide since 1982. Nature 373, 326-330.
    • Freyer, H. D. and Belacy, N. 1983. 13C12C records in Northern hemispheric trees during the past 500 years - anthropogenic impact and climate superpositions. J. Geophys. Res. 88, 6844-6852.
    • Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U. and StauVer, B. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237-238.
    • Fritts, H. C. 1976. T ree rings and climate. Academic Press, London.
    • Hughes, M. K., Kelly, P. M., Pilcher, J. R. and LaMarche, V. C. (eds) (1982). Climate from tree rings. Cambridge University Press.
    • Hu¨ sken, W. 1994. Dendrochronologische und o¨kologische Studien an Nadelh o¨lzern im Gebiet der Pragser Dolomiten (S u¨dtirol/Italien) Dissertationes Botanicae 215, Berlin.
    • Keeling, C. D., Mook, W. G. and Tans, P. P. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277, 121-123.
    • Keeling, C. D., Bascatow, R. and Tans, P. P. 1980. Predicted shift in the 13C/12C ratio of atmospheric carbon dioxide. Geophys. Res. L ett. 7, 505-508.
    • Keeling, C. D. and Whorf, T. P. 1999. Atmospheric CO2 records from sites in the SIO air sampling network. In: T rends: a compendium of data on global change. Carbon dioxide Information Analysis Centre, Oak Ridge National Laboratory. Oak Ridge, Tenn., USA.
    • Kitagawa, H. and Matsumkoto, M. 1993. Carbon isotope variation within trunks of Japanese cedars from Yakushima Island, Southern Japan. Geochem. J. 29, 149-153.
    • K o¨rner, C., Farquhar, G. D. and Wong, S. C. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88, 30-40.
    • Ku¨ rschner, W. M. 1996. Leaf stomata as biosensors of paleoatmospheric CO2 levels. Dissertation, University of Utrecht, The Netherlands.
    • LaMarche, V. C. 1974. Paleoclimatic inferences from long tree ring records. Science 183, 1043-1048.
    • Leavitt, S. W. and Long, A. 1984. Sampling strategy for stable isotope analysis of tree rings in Pine. Nature 311, 145-147.
    • Leavitt, S. W. and Lara, A. 1994. South American tree rings show declining d13C trend. T ellus 46B, 152-157.
    • Leavitt, S. W. and Long, A. 1989. Drought indicated in carbon-13/carbon-12 ratios of Southwestern tree rings. Water Res. Bull. 25, 341-347.
    • Leavitt, S. W., Liu, Y., Hughes, M. K., Liu, R., An, Z., Gutierrez, G. M., Danzer, S. R. and Shao, X. 1995. A single-year d13C chronology from Pinus tabulaeformis (Chinese Pine) tree rings at Huangling, China. Radiocarbon 37, 605-610.
    • Lipp, J., Trimborn, P., Fritz, P., Moser, H., Becker, B. and Frenzel, B. 1991. Stable isotopes in tree-ring cellulose and climatic change. T ellus 43B, 322-330.
    • Liu, Y., Wu, X., Leavitt, S. W. and Hughes, M. K. 1996. Stable carbon isotopes in tree rings from Huangling, China and climate variation. Science in China D39, 152-161.
    • Meyer, F. D. 2000. Rekonstruktion der Klima-Wachstumsbeziehungen und der Waldentwicklung im subalpinen Waldgrenz o¨koton bei Grindelwald, Schweiz. PhD Thesis, University of Basel, Switzerland.
    • M u¨ller, H. N. 1981. Messungen zur Beziehung Klimafaktoren - Jahrringwachstum von Nadelbaumarten veschiedener waldgrenznaher Standorte. Mitt. Forstl. Bundesversuchsanst. 142, 327-35.
    • Neuwirth, B. 1998. Dendroklimatologische Untersuchungen im L o¨tschental/Schweiz - Visuelle Jahrringparameter subalpiner Fichten in Abha¨ngigkeit von Ho¨ henlage, Exposition und Standortverha¨ltnissen. Diploma Thesis, Geographical Institute, University of Bonn, Germany.
    • Ott, E. 1978. U¨ber die Abha¨ngigkeit des Radialzuwachses und der Oberh o¨hen bei Fichte und La¨rche von der Meeresh o¨he und Exposition im L o¨tschental. Schweiz. Zeitschr. Forstw. 129, 169-193.
    • Robertson, I., Switsur, V. R., Carter, A. H.C., Barker, A. C., Waterhouse, J. S., BriVa, K. R. and Jones, P. D. 1997. Signal strength and climate relationships in 13C/ 12C ratios of tree ring cellulose from oak in east England. J. Geophys. Res. 102(D16), 19507-19516.
    • Saurer, M., Siegenthaler, U. and Schweingruber, F. H. 1995. The climate-carbon isotope relationship in tree rings and the significance of site conditions. T ellus 47, 320-330.
    • Saurer, M., Borella, S., Schweingruber, F. and Siegwolf, R. 1997. Stable carbon isotopes in tree rings of beech: climatic versus site-related influences. T ellus 49B, 80-92.
    • Schleser, G. H. and Jayasekera, R. 1985. d13C variations of leaves in forest as an indication of reassimilated CO2 from the soil. Oecologia 65, 536-542.
    • Schleser, G. H., Helle, G., Luecke, A. and Vos, H. 1999. Isotope signals as climate proxies: the role of transfer functions in the study of terrestrial archives. Quatern. Sci. Rev. 18, 972-943.
    • Schleser, G. H. 1995. Parameters determining carbon isotope ratios in plants. Pala¨oklimaforschung/Paleoclim. Res. 15, 71-96.
    • Schleser, G. H. 1999. 13C/12C in growth rings and leaves: carbon distribution in trees. In: Jones TP, Rowe NP (eds). Fossil plants and spores: modern techniques. Geological Society, London, 306-309.
    • Schweingruber, F. H. 1988. T ree rings. Basics and applications of dendrochronology. Dordrecht.
    • Schweingruber, F. H. 1996. T ree rings and environment. Dendroecology.
    • Schweingruber, F. H., Eckstein, D., Serre-Bachet, F. and Braeker, O. U. 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8, 9-38.
    • Sohn, A. W. and ReiV, F. 1942. Natriumchlorit als Aufschlußmittel. Der Papierfabrikant 2, 5-7.
    • Stuiver, M. 1978. Atmospheric carbon dioxide and carbon reservoir changes. Science 199, 253-258.
    • Tans, P. and Mook, W. G. 1980. Past atmospheric CO2 levels and the 13C/12C ratios in tree rings. T ellus 32, 268-283.
    • Treydte, K. 1998. Dendroklimatologische Untersuchungen im L o¨tschental/Schweiz - d13C subalpiner Fichten in Abha¨ngigkeit von H o¨henlage, Exposition und Standortverha¨ltnissen. Diploma Thesis, Geographical Institute, University of Bonn, Germany.
    • Wiesberg, L. 1974. Die 13C-Abnahme in Holz von Baumjahresringen. Eine Untersuchung zur anthropogenen Beeinflussung des CO2-Haushaltes der Atmospha¨re. In: Theseis, Rheinisch Westfa¨lische Technische Hochschule Aachen, 1-117.
    • Zimmermann, B. 1998. d13C in 1600-jaehriger Wacholder-Chronologie Tibets - klimatische und anthropogene Einfl u¨sse. Dissertation, Geological Institue, University of Cologne, Germany.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from