LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Buzorius, G.; Rannik, Ü; Nilsson, D.; Kulmala, M. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics
Fluxes of aerosol particles with sizes larger than 10 nm together with fluxes of momentum, sensible and latent heat and CO2 were measured 10 m above a Scots pine forest with the eddy covariance method. During days when nucleation events were observed particle size distribution measurements showed particle growth from 3 nm sizes to the Aitken mode. Analysis of the experimental data showed systematic differences in fluxes during the days when new particle production was observed compared to other days. During the nucleation events the particle flux measurements showed downward aerosol particle transport, i.e., indicating an elevated source, with respect to the measurement level, of particles larger than 10 nm. Furthermore the turbulence intensity and the heat fluxes were observed to be significantly higher. Evidences of mesoscale circulation were observed in wind speed records as well as in turbulent fluxes on nucleation days. The measurement results show that micrometeorology, the synoptic scale conditions and the particle formation are closely related.DOI: 10.1034/j.1600-0889.2001.530406.x

Share - Bookmark

Cite this article

Collected from