Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Otterå, Odd Helge; Drange, Helge (2004)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Earth and Planetary Astrophysics, Physics::Geophysics
The sensitivity of the ocean circulation to changes in solar irradiance is examined using an isopycnic coordinate, global ocean general circulation model (OGCM) coupled to a thermodynamic/dynamic sea-ice model. In the experiments, changes in the surface radiation forcing are calculated based on orbital data assuming that the atmospheric conditions are otherwise unchanged. Two sensitivity experiments are run with the ocean–sea-ice model: one with high and one with low solar irradiance representative of the last interglacial and glacial periods, respectively. The results show that the Atlantic merdional overturning circulation (AMOC) is increased (reduced) in response to lower (higher) summer solar irradiance. It is found that changes in the Arctic sea-ice volume and area are the main reason for the response. For the low solar irradiance case, less sea-ice is melted in summer leading to a saltier Arctic Ocean. This saltier water is then advected into the sinking regions in the winter, enhancing the intermediate and deep water formation. For the high solar irradiance case, a similar, but opposite, response occurs. The results thus confirm that the AMOC is very sensitive to external forcing. It is suggested that the scheme used for calculating changes in solar irradiance could prove useful when conducting glacial inception studies with fully coupled atmosphere–ocean models.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bentsen, M. 2002. Modelling Ocean Climate Variability of the North Atlantic and the Nordic Seas. PhD Thesis. Department of Mathematics, University of Bergen and Nansen Environmental and Remote Sensing Center, Bergen, Norway.
    • Bentsen, M. and Drange, H. 2000. Parametrizing surface fluxes in ocean models using the NCEP/NCAR reanalysis data. In: RegClim General Technical Report No. 4, Norwegian Institute for Air Research, Kjeller, Norway.
    • Bentsen, M., Evensen, G., Drange, H. and Jenkins, A. D. 1999. Coordinate transformation on a sphere using conformal mapping. Mon. Wea. Rev. 127, 2733-2740.
    • Berger, A. and Loutre, M. F. 1991. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297-317.
    • Bleck, R., Dean, S., Keefe, M. O. and Sawdey, A. 1995. A comparison of data-parallell and message-passing versions of the Miami isopycnic coordinate ocean model. Parallell Comput. 21, 1695-1720.
    • Bleck, R., Rooth, C., Hu, D. and Smith, L. T. 1992. Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486- 1505.
    • Boyle, E. 1995. Last-glacial-maximum North Atlantic deep water: on, off or somewhere in-between? Phil. Trans. R. Soc. London B 348, 243-253.
    • Broecker, W. S. 1991. The great ocean conveyor. Oceanography 4, 79- 89.
    • Broecker, W. S. and Denton, G. H. 1990. What drives glacial cycles? Sci. Am. 262, 49-56.
    • Budyko, M. I. 1969. The effect of solar radiation variations on the climate of the earth. Tellus 21, 611-619.
    • Cortijo, E., Duplessy, J., Labeyrie, L., Leclaire, H., Duprat, J. and van Weering, T. 1994. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth. Nature 372, 446-449.
    • Crowley, T. J. and North, G. R. 1991. Paleoclimatology. Oxford University Press, New York.
    • Dokken, T. M. and Jansen, E. 1999. Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401, 458-461.
    • Drange, H. and Simonsen, K. 1996. Formulation of Air-Sea Fluxes in the ESOP2 Version of MICOM. Technical Report 125, Nansen Environmantal and Remote Sensing Center, Bergen, Norway.
    • Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D. and Kallel, N. 1988. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343- 360.
    • Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. and Young, G. S. 1996. Bulk parametrization of air-sea fluxes for Tropical OceanGlobal Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 101, 3747-3764.
    • Fichefet, T., Hovine, S. and Duplessy, J. C. 1994. A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature 372, 252-255.
    • Friedrich, H. and Levitus, S. 1972. An approximation to the equation of state for sea water, suitable for numerical ocean models. J. Phys. Oceanogr. 2, 514-517.
    • Fronval, T. and Jansen, E. 1996. Rapid changes in ocean circulation and heat flux in the Nordic Seas during the last interglacial period. Nature 383, 806-810.
    • Ganopolski, A., Rahmstorf, S., Petoukhov, V. and Claussen, M. 1998. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351-356.
    • Gaspar, P., Gre´goris, Y. and Lefevre, J.-M. 1990. A simple eddy kinetic model for simulations of the oceanic vertical mixing: Tests at Station Papa and Long-Term Upper Ocean Study Site. J. Geophys. Res. 95, 16 179-16 193.
    • Gildor, H. and Tziperman, E. 2001. A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res. 106, 9117-9133.
    • Gloersen, P., Campbell, W. J., Cavalieri, D. J., Comiso, J. C. and Zwally, C. L. P. H. J. 1992. Artic and Antarctic sea ice, 1978-1987. National Aeronautics and Space Administration, Washington, D.C.
    • Harder, M. 1996. Dynamik, Rauhigkeit und Alter des Meereises in der Arktis. PhD Thesis. Alfred-Wegner-Institut fu¨r Polar- und Meeresforschung, Bremerhaven, Germany.
    • Hewitt, C. D., Stouffer, R. J., Broccoli, A. J., Mitchell, J. F. B. and Valdes, P. J. 2003. The effect of ocean dynamics in a coupled GCM simulation of the Last Glacial Maximum. Climate Dyn. 20, 203-218, doi:10.1007/s00382-002-0272-6.
    • Hibler, W. D. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815-846.
    • Hilmer, M. and Lemke, P. 2000. On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27, 3751-3754.
    • Imbrie, J., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzback, J., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, B. M. J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J. and Toggweiler, J. R. 1992. On the structure and origin of major glaciation cycles. 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701-738.
    • Khodri, M., Leclainche, Y., Ramstein, G., Braconnot, P., Marti, O. and Cortijo, E. 2001. Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410, 570-574.
    • Kutzbach, J. E. and Gallimore, R. G. 1988. Sensitivity of a coupled atmosphere/ML ocean model to changes in orbital forcing at 9000 years BP. J. Geophys. Res. 93, 803-821.
    • Labeyrie, L., Leclaire, H., Waelbroeck, C., Cortijo, E., Duplessy, J. C., Vidal, L., Elliot, M., Coat, B. L. and Auffret, G. 1999. Temporal variability of the surface and deep waters of the North West Atlantic Ocean at orbital and millennial scales. In: Mechanisms of Global Climate Change at Millennial Time Scales (eds. P. U. Clark, R. S. Webb and L. D. Keigwin), Vol. 112 of Geophysical Monograph. American Geophysical Union, Washington, D.C.
    • Lambert, S. J. and Boer, G. J. 2001. CMIP1 evaluation and intercomparison of coupled climate models. Climate Dyn. 17, 83-106.
    • Levitus, S. and Boyer, T. P. 1994. World Ocean Atlas 1994, Volume 4: Temperature. NOAA Atlas NESDIS 4, Washington, D.C., 117 pp.
    • Levitus, S., Burgett, R. and Boyer, T. P. 1994. World Ocean Atlas 1994, Volume 3: Salinity. NOAA Atlas NESDIS 3, Washington, D.C., 99 pp.
    • Meissner, K. J. and Gerdes, R. 2002. Coupled climate modelling of ocean circulation changes during ice age inception. Climate Dyn. 18, 455-473.
    • Meissner, K. J., Schmittner, A., Weaver, A. J. and Adkins, J. F. 2003. Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: A comparison between the simulated and observed radiocarbon ages. Paleoceanography 18, 1023, doi:10.1029/2002PA000762.
    • Mikolajewicz, U. and Maier-Reimer, E. 1994. Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model's conveyor belt. J. Geophys. Res. 99, 22633- 22644.
    • National Oceanic and Atmospheric Administration (NOAA). 1988. Data Announcement 88-MGG-02, Digital relief of the surface of the Earth. Technical report, NOAA, National Geophysical Data Center, Boulder, CO, USA.
    • Rahmstorf, S. 1995. Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Climate Dyn. 11, 447- 458.
    • Rahmstorf, S. 1999. Decadal variability of the thermohaline circulation. In: Beyond El Nino˜ (ed.A. Navarra). Springer-Verlag, Berlin.
    • Ruddiman, W. F. and McIntyre, A. 1979. Warmth of the subpolar north Atlantic Ocean during northern hemisphere ice-sheet growth. Science 204, 173-175.
    • Sarntheim, M., Gersonde, R., Niebler, S., Pflaumann, U., Spielhagen, R., Thiede, J., Wefer, G. and Weinelt, M. 2003. Overview of Glacial Atlantic Ocean Mapping (GLAMAP 2000). Paleoceanography 18, 1030, doi:10.1029/2002PA000769.
    • Wang, Z. and Mysak, L. A. 2000. A simple coupled atmosphere-oceansea-ice-land surface model for climate and paleoclimate studies. J. Climate 13, 1150-1172.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from