Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Law, Rachel M.; Kowalczyk, Eva A.; Wang, Ying-Ping (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The CSIRO biosphere model has been coupled to an atmosphere model and a simulation has been performed for the 20th century. Both biosphere and atmosphere are forced with global CO2 concentration and the atmosphere is also forced with prescribed sea surface temperatures. The simulation follows the C4MIP Phase 1 protocol. We assess the model simulation using atmospheric CO2data. Mauna Loa growth rate is well simulated from 1980 but overestimated before that time. The interannual variations in growth rate are reasonably reproduced. Seasonal cycles are underestimated in northern mid-latitudes and are out of phase in the southern hemisphere. The north–south gradient of annual mean CO2 is substantially overestimated due to a northern hemisphere net biosphere source and a southern tropical sink. Diurnal cycles at three northern hemisphere locations are larger than observed in many months, most likely due to larger respiration than observed.DOI: 10.1111/j.1600-0889.2006.00198.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Andres, R. J., Marland, G., Fung, I. and Matthews, E. 1996. A 1◦ ×1◦ distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950 - 1990. Global Biogeochem. Cycles 10, 419-429.
    • Collier, M. A. 2004. The CSIRO NCEP/NCAR/DOE R-1/R-2 archive. CSIRO Atmospheric Research technical paper 68, 75pp.
    • Cox, P. D., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187.
    • Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B. I., Churkina, G., and co-authors and the participants of the Potsdam NPP Model Intercomparison 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5 (Suppl. 1), 1-15.
    • Dargaville, R. J., Heimann, M., McGuire, A. D., Prentice, I. C., Kicklighter, D. W., and co-authors 2002. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: results from transient simulations considering increasing CO2, climate, and land-use effects. Glob. Biogeochem. Cyc. 16, 1092. DOI=10.1029/2001GB001426.
    • Davis, K. J., Bakwin, P. S., Yi, C., Berger, B. W., Zhao, C. and co-authors, 2003. The annual cycles of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower. Glob. Change Biol. 9, 1278-1293.
    • Desai, A. R., Noormets, A., Bolstad, P. V., Chen, J., Cook, B. D. and co-authors, 2006. Influence of vegetation and seasonal forcing on carbon dioxide fluxes across the Upper Midwest, USA: implications for regional scaling. Agric. Forest Meteor. (in press).
    • Dickinson, R. E., Shaikh, M., Bryant, R. and Graumlich, L. 1998. Interactive canopies for a climate model. J. Climate 11, 2823-2836.
    • Dufresne, J. L., Friedlingstein, P., Berthelot, M., Bopp, L., Ciais, P. and co-authors, 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 29, DOI:10.1029/2001GL013777.
    • Enting, I. G. 1987. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. 92D, 10 977-10 984.
    • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M. and co-authors. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101D, 4115-4128.
    • Falge, E., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C. and co-authors. 2005. FLUXNET Marconi Conference Gap-Filled Flux and Meteorology Data, 1992-2000. Data set. Available on-line [http//www. daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
    • Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J. L., Fairhead, L. and co-authors. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543-1546.
    • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloch, W. and coauthors. 2006. Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. J. Climate. 19, 3337-3353.
    • GLOBALVIEW-CO2. 2003. Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA CMDL, Boulder, Colorado. [Also available on Internet via anonymous FTP to ftp. cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].
    • Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S. and co-authors. 2002. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12, 891-899.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2003. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B, 555-579. doi:10.1034/j.1600- 0560.2003.00049.x.
    • Heimann, M., Esser, G., Haxeltine, A., Kaduk, J., Kicklighter, D. and co-authors. 1998. Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model intercomparison study. Glob. Biogeochem. Cyc. 12, 1-24.
    • Houghton, R. A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus 55B, 378-390.
    • Jones, C. and Warnier, M. 2004. Climate-land carbon cycle simulation of the 20th century: assessment of HadCM3LC C4MIP Phase 1 experiment. Technical Note 59 Hadley Centre, Meteorological Office, UK. http://www.metoffice.com/research/hadleycentre/pubs/ HCTN/HCTN 59.pdf.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and coauthors. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc. 3, 437-471.
    • Keeling, C. D. and Whorf, T. P. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
    • Kicklighter, D. W., Bondeau, A., Schloss, A. L., Kaduk, J., McGuire, A. D. and the participants of the Potsdam NPP Model Intercomparison 1999. Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob. Change Biol. 5 (Suppl. 1), 16-24.
    • Langenfelds, R. L., Francey, R. J., Pak, B. C., Steele, L. P., Lloyd, J. and co-authors. 2002. Interannual growth rate variations of atmospheric CO2 and its isotope δ13C, H2, CH4 and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16, 1048. doi:10.1029/2001GB001466.
    • Leuning, R., Kelliher, F. M., Pury, D. G. D. and Schulze, E. D. 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant Cell Environ. 18, 1183-1200.
    • Marland, G., Boden, T. A. and Andres, R. J. 2005. Global, Regional, and National Fossil Fuel CO2-Emissions. In: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
    • Masarie, K. A. and Tans, P. P. 1995. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11 593-11 610.
    • Matthews, H. D., Weaver, A. J. and Meissner, K. J. 2005. Terrestrial carbon cycle dynamics under recent and future climate change. J. Climate 18, 1609-1628. doi: 10.1175/JCLI3359.1.
    • McGregor, J. L. and Dix, M. R. 2001. The CSIRO conformal-cubic atmospheric GCM. IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics. Kluwer, 197-202.
    • McGregor, J. L. 1987. Accuracy and initialization of a two-timelevel split semi-Lagrangian model. Collection of papers presented at WMO/IUGG NWP symposium, Tokyo, 4-8 August 1987, 233-246.
    • McGregor, J. L. 1993. Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev. 121, 221-230.
    • McGregor, J. L. 1996. Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev. 124, 1311-1322.
    • McGuire, A. D., Sitch, S., Clein, J., Dargaville, R., Esser, G. and coauthors. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cyc. 15, 183- 206.
    • Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J. and co-authors. 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214-231.
    • Nemry, B., Franc¸ois, L., Geˆrard, J. C., Heimann, M. and the participants of the Potsdam NPP Model Intercomparison 1999. Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO2 signal. Glob. Change Biol. 5 (Suppl. 1), 65-76.
    • Prentice, I. C., Farquhar, G., Fasham, M., Goulden, M., Heimann, M. and co-authors. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, (eds.J. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 183-238.
    • Randerson, J. T., Thompson, M. V., Conway, T. J., Fung, I. Y. and Field, C. B. 1997. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles 11, 535-560.
    • Raupach, M. R., Finkele, K. and Zhang, L. 1997. SCAM (Soil-Canopy-Atmosphere Model): Description and comparison with field data. CSIRO Centre for Env. Mechanics Tech. Rep. 132.
    • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V. and co-authors. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407. doi:10.1029/2002JD002670.
    • Saleska, S. R., Miller, S. D., Matross, D. M., Goulden, M. L., Wofsy, S. C. and co-authors. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302, 1554- 1557.
    • Wang, Y. P. and Barrett, D. J. 2003. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production. Tellus 55B, 270-289. doi:10.1034/j.1600- 0560.2003.00031.x.
    • Wang, Y. P. and Leuning, R. 1998. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I. Model description and comparison with a multi-layered model. Agric. Forest Meteor. 91, 89-111.
    • Wang, Y. P., Baldocchi, D., Leuning, R., Falge, E. and Vesala, T. 2006. Estimating parameters in a land surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Glob. Change Biol. (in press).
    • Wang, Y. P. 2000. A refinement to the two-leaf model for calculating canopy photosynthesis. Agric. Forest Meteor. 101, 143-150.
    • Zeng, N., Qian, H., Munoz, E. and Iacono, R. 2004. How strong is carbon cycle-climate feedback under global warming? Geophys. Res. Lett. 31, L20203. doi:10.1029/2004GL020904.
    • Zhao, M., Heinsch, F. A., Nemani, R. R. and Running, S. W. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164-176.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Collected from