Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shibistova, Olga; Lloyd, Jon; Zrazhevskaya, Galina; Arneth, Almut; Kolle, Olaf; Knohl, Alexander; Astrakhantceva, Natasha; Shijneva, Irina; Schmerler, Jens (2002)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q10 of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C m−2 a−1. Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18.DOI: 10.1034/j.1600-0889.2002.01488.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amiro, B. D. 2001. Paired tower measurements of carbon and energy fluxes following disturbance in the boreal forest. Global Change Biol. 7, 253-268.
    • Amthor, J. A. and Baldocchi, D. D. 2001. Terrestrial higher plant respiration and net primary production. In: Terrestrial global productivity (eds. J. Roy, B. Saugier and H. A. Mooney) Academic Press, San Diego, 33-82.
    • Antonova G. F. and Stasova V. V. 1992. The formation of annual xylem rings in the stems of Pinus sylvestris and Larix sibirica. Lesovedenie 5, 19-27 (in Russian).
    • Antonova G. F. and Stasova V. V. 1993. Effects of environmental factors on wood formation in Scots pine stems. Trees 7, 214-219.
    • Arneth, A., Kelliher, F. M., Gower, S. T., Scott, N. A., Byers, J. N. and McSeveny, T. M. 1998. Environmental variables regulation soil carbon dioxide efflux following clear-cutting of a Pinus radiata. D. Don plantation. J. Geophys. Res. 103, 5695-5705.
    • Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O., Lloyd, J., Vygodskaya, N. N. and Schulze, E.-D. 2002. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, this issue.
    • Atkin, O. K., Evans, J. R., Ball, M. C., Lambers, H. and Pons, T. L. 2000a. Leaf respiration in snow gum in the light and dark: interactions between temperature and irradiance. Plant Physiol. 122, 915-923.
    • Atkin, O. K., Holly, C. and Ball, M. C. 2000b. Acclimation of snow gum (Eucalyptus pauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and leaf temperature sensitivity of respiration. Plant Cell Environ. 23, 15-26.
    • Baldocchi, D. D., Law, B. E. and Anthoni, P. M. 2000. On measuring and modeling energy fluxes above the floor of a homogenous and heterogeneous conifer forest. Agric. Forest Meteorol. 102, 187-206.
    • Bird, M., Sˇ antru˚cˇkova´, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnikov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue.
    • Bouma, T. J., De Visser, R., Jannsen, J. J. J. A., De Kock, M. J., Van Leewen, P. H. and Lambers, H. 1994. Respiratory energy requirements and rate of protein turnover in vivo determined by the use of an inhibitor of protein synthesis and a probe to assess its affect. Physiol. Plant. 92, 585-594.
    • Constantin, J., Grelle, A., Ibrom, A. and Morgenstern, K. 1999. Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method. Agric. For. Meteorol. 98/99, 629- 643.
    • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184-187.
    • Cramer, W., Bondeau, A., Woodward, F. I., et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic vegetation models. Global Change Biol. 7, 357-373.
    • Denning, A. S., Collatz, G. J., Zhang, C. G., Randall, D. A., Berry, J. A., Sellers, P. J., Colleto G. D. and Dazlich, D. A. 1996. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. 1 Carbon fluxes. Tellus 48B, 521-542.
    • Ericsson, A. 1979. Effects of fertilization and irrigation on seasonal changes in carbohydrate reserves in different age classes of needles on 20-year old Scots pine trees (Pinus sylvestris). Physiol. Plant. 45, 270-280.
    • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. BoundaryLayer Meteorol. 74, 321-340.
    • Finnigan, J. J., Clements, R., Malhi, Y., Leuning, R. and Cleugh, H. A. 2002. A re-evaluation of long-term flux measurement techniques Part I. Averaging and coordinate rotation. Boundary-Layer Meteorol. (in press).
    • Foken T. and Wichura, B. 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83-105.
    • Griffin, K. L. 1994. Calormetric estimates of construction costs and their use in ecological studies. Funct. Ecol. 8, 551-562.
    • Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Measurements of carbon sequestration by long-term eddy covariance: Methods and critical evaluation of accuracy. Global Change Biol. 2, 169- 182.
    • Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J. and Stow, T. K. 1997. Carbon distribution and aboveground net primary production in aspen, jack pine and black spruce stands in Sakatchewan and Manitoba, Canada. J. Geophys. Res. 102, 29029- 29041.
    • Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P. and Miranda, H. 1996. The use of eddy covariance to infer the carbon balance of Brazilian rain forests. Global Change Biol. 2, 209-218.
    • Hosker, R. P. Jr., Nappo, C. J. and Hanna, S. R. 1974. Diurnal variation of vertical thermal structure in a pine plantation. Agric. Meteorol. 13, 257-265.
    • Jacobs, A. F. G., Van Boxel, J. H. and Shaw, R. H. 1992. The dependence of canopy layer turbulence on within-canopy stratification. Agric. For. Meteorol. 58, 247-256.
    • Jacobs, A. F. G., van de Wiel and Holtstag, A. A. M. 2001. Daily course of skewness and kurtosis within and above a crop canopy. Agric. For. Meteorol. 110, 71-84.
    • Janssens, I. A., Lankreijer, H., Matteucci, G., et al. 2001a. Productivity overshadows temperature in determining soil and ecosystem respiration rates across European forests. Global Change Biol. 7, 269-278.
    • Janssens, I. A., Kowalski, A.S. and Ceulemans, R. 2001b. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol. 106, 61-69.
    • Jarvis, P. G. and Linder, S. 2000. Constraints to growth of boreal forests. Nature 405, 904-905.
    • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncrieff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953- 28966.
    • Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milyukova, I., Grigoriev, S., Panfyorov, M., Sogatchev, A., Varlagin, A., Ziegler, W., Bauer, G., Wong, S.-C. and Schulze, E.-D. 1999. Carbon dioxide efflux density from the floor of a central Siberian forest. Agric. For. Meteorol. 94, 217-232.
    • Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic-C storage. Soil Biol. Biochem. 27, 753-760.
    • Knohl, A., Kolle, O., Minayeva, T. I., Milyukova, I. M., Vygodskaya, N. N., Foken, Th. and Schulze, E.-D. 2002. Carbon exchange of a Russian boreal forest after windthrow. Global Change Biol. 8, 231-246.
    • Knorr, W. and Heimann, M. 2001. Uncertainties in global terrestrial biosphere modelling 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochem. Cycles 15, 207-225.
    • Krivosheeva, A., Tai, D.-L., Ottander, C., Wingsle, G., Dube, S. K. And O¨quist, G. 1996. Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200, 296-305.
    • Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C., Pereira, M. G. P., Culf, A. and Grace, J. 2000. Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorol. 94, 297-331.
    • Lafont, S., Kergoat, L., Dedieu, G., Chevillard, G., Karstens, U. and Kolle, O. 2002. Spatial and temporal variability of land CO2 fluxes estimated with remote sensing and analysis data over western Eurasia. Tellus 54B, this issue.
    • Lavigne, M. B. and Ryan, M. G. 1997. Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiol. 17, 543-551.
    • Law, B. E., Ryan, M. G. and Anthoni, P. M. 1999a. Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biol. 5, 169-182.
    • Law, B. E., Baldocchi, D. D. and Anthoni, P. M. 1999b. Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agric. For. Meteorol. 94, 171-188.
    • Lee, X., Black, T. A., Hartog, G. D., Neumann, H. H., Nesic, Z. and Olejnik, J. 1996. Carbon dioxide exchange and nocturnal processes over a mixed deciduous forest. Agric. For. Meteorol. 81, 13-29.
    • Leverenz, J. W. and O¨quist, G. 1987. Quantum yields of photosynthesis at temperatures between 2 ◦C and 35 ◦C in a cold-tolerant C3 plant (Pinus sylvestris) during the course of one year. Plant Cell Environ. 10, 287-295.
    • Linder S. and Troeng, E. 1981. The seasonal variation in stem and coarse root respiration of a 20 year old Scots pine. Mitteil. Forstl. Bundes. Wien 142, 125-139.
    • Lindroth, A., Grelle, A. and More´n, A.-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4, 443-450.
    • Lipson, D. A., Schmidt, S. K., Monson, R. K. 1999. Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80, 1623-1631.
    • Lipson, D. A., Schmidt, S. K., Monson, R. K. 2000. Carbon availability and temperature control the post-snowmelt decline in alpine microbial biomass. Soil Biol. Biochem. 32, 441-448.
    • Lloyd, J. 1999a. Current perspectives on the terrestrial carbon cycle. Tellus 51B, 336-342.
    • Lloyd, J. 1999b. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale Funct. Ecol. 13, 439-459.
    • Lloyd, J. and Farquhar, G. D. 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201-215.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315-323.
    • Lloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S.-C., Miranda, H. S., Wright, I. R., Gash, J. H. C. and McIntyre, J. 1995. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell Environ. 18, 1129-1145.
    • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with plant nutrient status. Funct. Ecol. 10, 4-32.
    • Lloyd, J., Francey, R. J., Mollicone, D., Raupach, M. R., Sogachev, A., Arneth, A., Byers, J. N., Kelliher, F. M., Rebmann, C., Valentini, R., Wong, S.-C., Bauer, G. and Schulze, E.-D. 2001. Vertical profiles, boundary-layer budgets, and regional flux estimates for CO2, and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles 15, 267-284.
    • Lloyd, J., Shibistova, O., Zolotoukhine, D., Kolle, O., Arneth, A., Styles, J., Tchebakova, N. M. and Schulze, E.-D. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian Pine forest. Tellus 54B, this issue.
    • McMillan, R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. BoundaryLayer Meteorol. 43, 231-245.
    • Mahrt, L. 1999. Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90, 375-396.
    • Makkanen, K. and Helmisaari, H.-S. 1998. Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. Forest Ecol. Management 102, 283-290.
    • Malkina, I. S. 1984. Gas-exchange and synthesis of assimilates by Scots pine needles of different age. Lesovedenie 6, 29-33 (in Russian).
    • Martin, P. H., Valentini, R., Jacques, M., et al. 1998. New estimate of the sink strength of EU forests integrating flux measurements, field surveys and space observations: 0.17 to 0.35 Gt (C). Ambio 27, 582-584.
    • Milyukova, I. M, Kolle, O., Varlagin, A. B., Vygodskaya, N. N., Schulze, E.-D. and Lloyd, J. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B, this issue.
    • O¨gren, E. 1997. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17, 47-51.
    • O¨gren, E., Nilsson, T. and Sundblad, L.-G. 1997. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: Indications of different sensitivities of spruce and pine. Plant Cell Environ. 20, 247-253.
    • O¨gren, E. 2000. Maintenance respiration correlates with sugar but not nitrogen concentration in dormant plants. Physiol. Plant. 108, 295-299.
    • O¨quist, G., Brunes, L., Ha¨llgren, J.-E., Gezelius, K., Helle´n, M. and Malmberg, G. 1980. Effects of artificial forest hardening and winter stress on net photosynthesis, photosynthetic electron transport and RuBP carboxylase activity in seedlings on Pinus sylvestris. Physiol. Plant. 48, 526- 531.
    • Ottander, C., Campbell, D. and O¨quist, G. 1995. Seasonal changes in Photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197, 176-183.
    • Outcalt, S. I., Nelson, F. E. and Hinkel, K. M. 1990. The zero curtain effect-heat and mass transfer across an isothermal region in freezing soil. Water Resour. Res. 26, 1509- 1516.
    • Parker, J. 1959. Seasonal variations in sugars of conifers with some observations on cold resistance. For. Sci. 5, 56-63.
    • Potter, C., Bubier, J., Crill, P. and Lafleur, P. 2001. Ecosystem modeling of methane and carbon dioxide fluxes of boreal forest sites. Can. J. For. Res. 31, 208-223.
    • Prentice, C., Farquhar, G. D., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Le Que´re´, C., Scholes, R. and Wallace, D. 2001. The carbon cycle and atmospheric CO2. In: Climate change: the scientific basis: the contribution of WGI of the IPCC to the IPCC Third Assessment Report (TAR), (eds. J. Houghton and D. Yihui). Cambridge University Press, Cambridge,183-237.
    • Raich, J. W. and Potter, C. S. 1995. Global patterns of carbon dioxide emission from soils. Global Biogeochem. Cycles 9, 23-36.
    • Ross, D. J., Kelliher, F. M. and Tate, K. R. 1999. Microbial process in relation to carbon, nitrogen and temperature regimes in litter and a sandy mineral soil from a central Siberian Pinus sylvestris L. forest. Soil Biol. Biochem. 31, 757-767.
    • Ruimy, A., Dedieu, G. and Saugier, B. 1996. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem. Cycles 10, 269-285.
    • Ryan, M. G. 1990. Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Can. J. For. Res. 20, 48-57.
    • Ryan, M. G., Lavigne, L. B. and Gower, S. T. 1997. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102, 28871-28883.
    • Sˇantru˚ cˇkova´, H., Bird, M. I., Kalashnikov, Y. N., Grund, M., Elhottova, D., Sˇ imek, M., Grigoryev, S., Gleixner, G., Arneth, A., Schulze, E.-D. and Lloyd, J. 2002. Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biol. (in press).
    • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K. and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci. Plant Nutr. 46, 31-42.
    • Schimel, D. S., Braswell, B. H., Parton, W. J. 1999. Equilibration of the terrestrial water, nitrogen and carbon cycles. Proc. Natl. Acad. Sci. USA 94, 8280-8293.
    • Schuepp, P. H., LeClerc, M. Y., MacPherson, J. L. and Desjardin, R. L. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol. 50, 355-373.
    • Schulze, E.-D., Lloyd, J., Kelliher, F. M., Wirth, C., Rebmann, C., Luhker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Done, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 5, 703-722.
    • Shibistova, O., Lloyd, J., Evgrafova, S., Savushkina, N., Zrazhewskaya, G., Arneth, A., Knohl, A., Kolle, O. and Schulze, E.-D. 2002a. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B, this issue.
    • Shibistova, O. B., Lloyd, J., Kolle, O., Arneth, A., Tchebakova, N. M., Zolotoukhine, D. A., Zrazhewskaya, G. and Schulze, E.-D. 2002b. Eddy covariance assessment of CO2 accumulation by mature pine forest. Dokl. Akad. Nauk 383, 1-5 (in Russian).
    • Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., et al. 1984. Daily variations in temperature and humidity within and above Amazonian forest. Weather 40, 102-108.
    • Sorokin, N. D. and Evgrafova, S. Yu. 1999. Biological activity of forest cryogenic soils in Central Evenkia. Eurasian Soil Sci. 32, 634-638.
    • Sprugel, D. G. and Benecke, U. 1991. Measuring woodytissue respiration and photosynthesis. In: Techniques and approaches in forest tree physiology (eds. J. P. Lassoie and T. M. Hinckley). CRC Press, Boca Raton, FL, 329-355.
    • Stockfors, J. 2000. Temperature variations and distribution of living cells within tree stems: implications for stem respiration modelling and scaling up. Tree Physiol. 20, 1057- 1062.
    • Stockfors, J. and Linder, S. 1998a. The effects of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiol. 18, 155- 166.
    • Stockfors, J. and Linder, S. 1998b. The effect of nutrition on the seasonal course of needle respiration in Norway spruce stands. Trees 12, 130-138.
    • Sudachkova, N. E., Romanova, L. I., Milyutina, I. L., Kozhevnikova, N. N. and Semenova, G. P. 1994. Environmental stress impact on carbohydrate level and distribution in tissues of Scots pine in Siberia. Lesovedenie 6, 3-9 (in Russian).
    • Sumgin, M. I., Kachurin, S. P., Tolstikhin, N. I. and Tumel, V. F. 1940. General permafrostology. Akademiia Nauk SSR, Moscow. 240 pp. (in Russian).
    • Tchebakova, N. M., Kolle, O., Zolotoukhine, D., Arneth, A., Styles, J. M., Vygodskaya N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B, this issue.
    • Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H. and Silkin, P. P. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400, 149-151.
    • Valentini, R., Matteucci, G., Dolman, A. J., et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865.
    • Winston, G. C., Sundquist, E. T, Stephens, B. B. and Trumbore, S. E. 1997. Winter CO2 fluxes in a boreal forest. J. Geophys. Res. 102, 795-804.
    • Wirth, C., Schulze, E-.D., Schulze, W., von Stu¨nzer-Karbe, W., Ziegler, W., Milyukova, I. M., Sogatchev, A, Varlagin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121, 66-80.
    • Wirth, C. Czimczik, C. I. and Schulze, E.-D. 2002a. Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B, this issue.
    • Wirth, C., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Aboveground net primary productivity of Siberian Scots pine forest-Magnitude and causes of variability at different timescales. Tree Physiol. 22, 537-552.
    • Wirth, C., Schulze, E.-D., Lu¨hker, B., Grogoriev, S., Siry, M., Hardes, G., Ziegler, W., Backor, M., Bauer, G. and Vygodskaya, N. N. 2002. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil (in press).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from