LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Robertson, Lynette B.; Stevenson, David S.; Conen, Franz (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Model-predicted atmospheric concentrations of 222Rn based on two different 222Rn source terms have been compared with observations in the lower troposphere. One simulation used a globally uniform 222Rn source term from ice-free land surfaces of 1 atom cm−2 s−1; the other assumed a northwards-decreasing source term (linear decrease from 1 atom cm−2 s−1 at 30°N to 0.2 atom cm−2 s−1at 70°N). Zero emissions were assigned to oceans. The northwards-decreasing source term improved predictions at four out of six stations north of 50°N, reducing the mean prediction/observation ratio from 2.8 to 0.87. In the latitudinal band between 30°N and 50°N, the northwards-decreasing source term resulted in systematic under-prediction of atmospheric 222Rn, whereas the uniform source term provided predictions close to observations. Predictions based on the northwards-decreasing source term were significantly (p < 0.01) better than those based on the uniform source term for an averaged vertical 222Rn profile around 44°N, but were not for one around 38°N. The results indicate that a northwards-decreasing source term could be a more realistic representation of actual 222Rn emissions than a uniform 1 atom cm−2 s−1 source term. However, the decrease in 222Rn source strength with increasing latitude might not begin at 30°N but somewhat further north. This hypothesis should be investigated through model-independent means.DOI: 10.1111/j.1600-0889.2005.00138.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Biraud, S., Ciais, P., Ramonet, M., Simmonds, P., Kazan, V. et al. 2002. Quantification of carbon dioxide, methane, nitrous oxide and chloroform emissions over Ireland from atmospheric observations at Mace Head. Tellus 54B, 41-60.
    • Brost, R. A. and Chatfield, R. B. 1989. Transport of radon in a threedimensional, subhemispheric model. J. Geophys. Res. 94, 5095-5119.
    • Chevillard, A., Ciais, P., Karstens, U., Heimann, M., Schmidt, M. et al. 2002. Transport of 222Rn using the regional model REMO: a detailed comparison with measurements over Europe. Tellus 54B, 850-871.
    • Collins, W. J., Derwent, R. G., Johnson, C. E. and Stevenson, D. S. 2000. The impact of human activities upon the photochemical production and destruction of tropospheric ozone. Q. J. R. Meteorol. Soc. 126, 1925-1952.
    • Collins, W. J., Derwent, R. G., Johnson, C. E. and Stevenson, D. S. 2002. A comparison of two schemes for the convective transport of chemical species in a Lagrangian global chemistry model. Q. J. R. Meteorol. Soc. 128, 991-1009.
    • Collins, W. J., Stevenson, D. S., Johnson, C. E. and Derwent, R. G. 1997. Tropospheric ozone in a global-scale 3-D Lagrangian model and its response to NOx emission controls. J. Atmos. Chem. 26, 223-274.
    • Conen, F. and Robertson, L. B. 2002. Latitudinal distribution of radon222 flux from continents. Tellus 54B, 127-133.
    • Dentener, F., Feichter, J. and Jeuken, A. 1999. Simulation of the transport of 222Rn using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements. Tellus 51B, 573-602.
    • EML (Environmental Measurements Laboratory), 2003. Environmental Measurements Laboratory Atmospheric 222Rn database. United States Department of Energy Environmental Measurements Laboratory, New York (http://www.eml.doe.gov/databases/radon/index.cfm).
    • Evangelista, H. and Pereira, E. B. 2002. Radon flux at King George Island, Antarctic Peninsula. J. Environ. Radioactiv. 61, 283-304.
    • Feichter, J. and Crutzen, P. J. 1990. Parameterization of vertical tracer transport due to deep cumulus convection in a global transport model and its evaluation with 222Radon measurements. Tellus 42B, 100-117.
    • Fisenne, I. M. and Keller, H. W. 1996. Continuous indoor and outdoor measurements of 222Rn in New York City: city as a source. Environ. Int. 22, S131-S138.
    • Ga¨ggeler, H. W., Jost, D. T., Baltensperger, U. and Schwikowski, M. 1995. Radon and thoron decay product and 210Pb measurements at Jungfraujoch, Switzerland. Atmos. Environ. 29, 607-616.
    • Genthon, C. and Armengaud, A. 1995. Radon-222 as a comparative tracer of transport and mixing in two general circulation models of the atmosphere. J. Geophys. Res. Atmos. 100, 2849-2866.
    • Gold, S., Barkhau, H., Shleien, W. and Kahn, B. 1964. Measurement of naturally occurring radionuclides in air. In: The Natural Radiation Environment (eds J. A. S. Adams and W. M. Lowder). University of Chicago Press, Chicago, IL, 369-382.
    • Gupta, M. L., Douglass, A. R., Kawa, S. R. and Pawson, S. 2004. Use of radon for evaluation of atmospheric transport models: sensitivity to emissions. Tellus 56B, 404-412.
    • Hatakka, J., Aalto, T., Aaltonen, V., Aurela, M., Hakola, H. et al. 2003. Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res. 8, 365-383.
    • Heimann, M., Monfray, P. and Polian, G. 1990. Modelling the long-range transport of 222Rn to sub-Antarctic and Antarctic areas. Tellus 42B, 83-99.
    • Hutter, A. R., Larsen, R. J., Maring, H. and Merrill, J. T. 1995. Radon-222 at Bermuda and Mauna Loa: local and distant sources. J. Radioanal. Nucl. Chem. Articles 193, 309-318.
    • Jacob, D. J. and Prather, M. J. 1990. Radon-222 as a test of convective transport in a general circulation model. Tellus 42B, 118-134.
    • Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R. L., Balkanski, Y. J. et al. 1997. Evaluation and intercomparison of global atmospheric transport models using Rn-222 and other short-lived tracers. J. Geophys. Res. 102, 5953-5970.
    • Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B. et al. 1997. The second Hadley Centre coupled oceanatmosphere GCM: model description, spinup and validation. Clim. Dyn. 13, 103-134.
    • Kritz, M. A., Rosner, S. W. and Stockwell, D. Z. 1998. Validation of an off-line three-dimensional chemical transport model using observed radon profiles 1. Observations. J. Geophys. Res. 103, 8425-8432.
    • Lambert, G., Polian, G., Ardouin, B., Renault, J. and Balkanski, Y. 1995. CFR database of 222Rn, 220Rn, and 210Pb in the sub-Antarctic and Antarctic atmosphere. Centre des Faibles Radioactivites, Gif-surYvette, France.
    • Lambert, G., Polian, G., Sanak, J., Ardouin, B., Buisson, A. et al. 1982. Cycle of radon and its daughters: application to the study of troposphere-stratosphere exchanges [in French]. Ann. Geophys. 38, 497-531.
    • Lee, H. N. and Feichter, J. 1995. An intercomparison of wet precipitation scavenging schemes and the emission rates of 222Rn for the simulation of global transport and deposition of 210Pb. J. Geophys. Res. 100, 23 252-23 270.
    • Lin, X., Zaucker, F., Hsie, E. Y., Trainer, M. and McKeen, S. A. 1996. Radon-222 simulations as a test of a three-dimensional regional transport model. J. Geophys. Res. 101, 29 165-29 177.
    • Lockhart, L. B. 1959. Atmospheric radioactivity levels at Yokosuka, Japan, 1654-1958. J. Geophys. Res. 64, 1445-1449.
    • Lockhart, L. B. 1960. Atmospheric radioactivity in South America and Antarctica. J. Geophys. Res. 65, 3999-4005.
    • Lockhart, L. B. 1962. Natural radioactive isotopes in the atmosphere at Kodiak and Wales, Alaska. Tellus 14, 351-355.
    • Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J. et al. 2000. A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus 52B, 1025-1056.
    • Robe´, M. C., Rannou, A. and Le Bronec, J. 1992. Radon measurement in the environment in France. Radiat. Prot. Dosim. 45, 455-457.
    • Schery, S. D. and Wasiolek, M. A. 1998. Modelling radon flux from the Earth's surface. In: Radon and Thoron in the Human Environment, Proceedings of the 7th Tohwa University International Symposium (eds A. Katase and M. Shimo). World Scientific Press, Singapore, 207-217.
    • Schmidt, M., Graul, R., Sartorius, H. and Levin, I. 1996. Carbon dioxide and methane in continental Europe: a climatology, and 222Radonbased emission estimates. Tellus 42B, 457-473.
    • Stevenson, D. S., Collins, W. J., Johnson, C. E. and Derwent, R. G. 1998. Intercomparison and evaluation of atmospheric transport in a Lagrangian model (STOCHEM), and an Eulerian model (UM), using 222Rn as a short-lived tracer. Q. J. R. Meteorol. Soc. 124, 2477- 2491.
    • Stevenson, D. S., Johnson, C. E., Highwood, E. J., Gauci, V., Collins, W. J. et al. 2003. Atmospheric impact of the 1783-1784 Laki eruption: Part I Chemistry modelling. Atmos. Chem. Phys. 3, 487-507.
    • Stillwell-Soller, L. M., Klinger, L. F., Pollard, D. and Thompson, S. L. 1995. The Global Distribution of Wetlands. NCAR Technical Note NCAR/TN-416+STR, National Center for Atmospheric Research, Boulder, CO.
    • Sun, K., Guo, Q. and Zhuo, W. 2004. Feasibility for mapping radon exhalation rate from soil in China. J. Nucl. Sci. Technol. 41, 86- 90.
    • Taguchi, S., Iida, T. and Moriizumi, J. 2002. Evaluation of the atmospheric transport model NIRE-CTM-96 by using measured radon-222 concentrations. Tellus 54B, 250-268.
    • Turekian, K. K., Nozaki, Y. and Benninger, L. K. 1977. Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci. 5, 227-255.
    • Whittlestone, S. and Zahorowski, W. 1998. Baseline radon detectors for shipboard use: development and deployment in the first aerosol characterisation experiment (ACE 1). J. Geophys. Res. 103, 16 743- 16 751.
    • WMO/GAW, 2004. 1st International Expert Meeting on Sources and Measurements of Natural Radionuclides Applied to Climate and Air Quality Studies, Gif-sur-Yvette, France, 3-5 June 2003. WMO TD No 1201 (http://www.wmo.ch/web/arep/reports/gaw155.pdf).
    • Wyputta, U. 1997. On the transport of trace elements into Antarctica using measurements at the Georg-von-Neumayer station. Tellus 49, 93-111.
    • Xu, N., Wei, F. S., Ten, E. J. and Chen, L. Q. 1993. Evaluation of indigenous concentrations of uranium and thorium in soils of China. Commun. Soil Sci. Plant Anal. 24, 1795-1803.
    • Zaucker, F., Daum, P. H., Wetterauer, U., Berkowitz, C., Kromer, B. et al. 1996. Atmospheric 222Rn measurements during the 1993 NARE intensive. J. Geophys. Res. 101, 29149-29164.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from