Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Asano, T.; Yuasa, K.; Kunugita, K.; Teraji, T.; Mitsuoka, T. (2011)
Publisher: Microbial Ecology in Health and Disease
Journal: Microbial Ecology in Health and Disease
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: fluids and secretions
Gluconate was fermented selectively by the Bifidobacterium adolescentis group and some species of other genera, including Clostridium clostridiiforme, C. innocuum, Propionibacterium acnes, Megasphaera elsdenii, Enterococcus faecium and Klebsiella pneumoniae; however it was not utilised by most other bacteria including the Bacteroidaceae. No other organic acid salts were utilised by B. adolescentis. These salts weakly inhibited the growth of C. perfringens in vitro, as did gluconate. The absorption rate of gluconate from the ligated small intestinal loop in rats was 19.9 per cent under conditions when 100 per cent of glucose was absorbed. The effects of ingestion of gluconate on human faecal bacteria was studied in ten healthy adult males. They ingested 9 g/d or 3 g/d of glucono-δ-lactone (anhydride of gluconic acid). With the 9 g/d ingestion, the number of bifidobacteria significantly increased (P<0.001), whereas C. perfringens decreased and Enterobacteriaceae remained constant. The concentrations of bifidobacteria also increased (P<0.05) following 3 g/d ingestion.Keywords - Gluconic acid, Gluconate, Absorption, Faecal flora, Bifidobacteria.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Fildes P. (1920). New medium for the growth of B. influenza. British Journal of Experimental PatholOgy 1, 129-130.
    • 2. Hayakawa K, Mizutani J, Wada K, Masai T, Yoshihara I, Mitsuoka T. (1990). Effects of soybean oligosaccharides on human faecal flora. Microbial Ecology in Health and Disease 3, 293- 303.
    • 3. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria and MicroJora 5, 37-50.
    • 4. Holdeman LV, Cat0 EP, Moore WEC. (1977). Anaerobic laboratory manual, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg.
    • 5. Ito M, Deguchi Y, Miyamori A, Matsumoto K, Kikuchi H, Matsumoto K, Kobayashi Y, Yajima T, Kan T. (1990). Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microbial Ecology in Health and Disease 3, 285- 292.
    • 6. Kohmoto T, Fukui F, Takaku H, Machida Y, Arai M, Mitsuoka T. (1988). Effect of isomaltooligosaccharides on human fecal flora. BiJidobacteria and MicroJora 7,61-69.
    • 7. Mitsuoka T. (1990). Bifidobacteria and their role in human health. Journal of Industrial Microbiology 6, 263-267.
    • 8. Mitsuoka T, Ohno K, Benno Y, Suzuki K, Nanba K. (1976). Die Faekalflora bei Menschen IV Mittei1ung:Vergleich des neu entwickelten Verfahrens mit den bisherigen ublichen Verfahren zur Dramfloraanalyse. Zentralblatt f u r Bakterialogie. Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I, originale A234, 219-233.
    • 9. Mitsuoka T, Sega T, Yamamoto S. (1965). Eine verbesserte Methodik der qualitativen und quantitativen Analyse der Darmflora von Menscen und Tieren. Zentralblatt f u r Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abteilung I, originale A195, 455469.
    • 10. Okazaki M, Fujikawa S, Matsumoto N. (1990). Effect of xylooligosaccharide on the growth of bifidobacteria. Bijidobacteria and Microflora 9, 77-86.
    • 11. Terada A, Hara H, Kataoka M, Mitsuoka T. (1992). Effect of lactulose on the composition and metabolic activity of the human faecal flora. Microbial Ecology in Health and Disease 5, 43-50.
    • 12. Terada A, Hara H, Oishi T, Matsui S, Mitsuoka T, Nakajyo S, Fujimori I, Hara K. (1992). Effect of dietary lactosucrose on faecal flora and faecal metabolites of dogs. Microbial Ecology in Health and Disease 5, 87-92.
    • 13. Yaeshima T, Fujisawa T, Mitsuoka T. (1992). Bijidobacterium species expressing phenotypical similarity to Bifidobacterium adolescentis isolated from the feces of human adults. B$dobacteria and MicroJEora 11, 25-32.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from