LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
BARNOLA, J. -M.; PIMIENTA, P.; RAYNAUD, D.; KOROTKEVICH, Y. S. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Interpretation of the past CO2 variations recorded in polar ice during the large climatic transitions requires an accurate determination of the air-ice age difference. For the Vostok core, the age differences resulting from different assumptions on the firn densification process are compared and a new procedure is proposed to date the air trapped in this core. The penultimate deglaciation is studied on the basis of this new air dating and new CO2 measurements. These measurements and results obtained on other ice cores indicate that at the beginning of the deglaciations, the CO2 increase is either in phase or lags by less than about 1000 years with respect to the Antarctic temperature, while it clearly lags the temperature at the onset of the last glaciation.DOI: 10.1034/j.1600-0889.1991.t01-1-00002.x
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from