Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Shigeyuki Ishidoya; Shohei Murayama; Chikako Takamura; Hiroaki Kondo; Nobuko Saigusa; Daisuke Goto; Shinji Morimoto; Nobuyuki Aoki; Shuji Aoki; Takakiyo Nakazawa (2013)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, continuous measurements, atmospheric chemistry; geochemistry, oxygen; carbon dioxide; forest ecosystem, O2:CO2 exchange ratio, forest ecosystem, atmospheric O2/N2 ratio
Detailed observations of O2:CO2 exchange ratios were conducted in a cool temperate deciduous forest located in central Japan. The exchange ratios of soil respiration and net assimilation were found to be 1.11±0.01 and 1.02±0.03 from soil chamber and branch bag measurements, respectively. Continuous measurements of the atmospheric O2/N2 ratio and the CO2 concentration, made inside the canopy during a summer season, indicated that the average exchange ratio was lower in the daytime (0.87±0.02) than in the nighttime (1.03±0.02) with a daily mean value of 0.94±0.01. The observed average daytime and nighttime exchange ratios were nearly consistent with the corresponding values obtained from a one-box canopy O2/CO2 budget model simulation of net turbulent O2 and CO2 fluxes between the atmosphere and the forest ecosystem. Our results suggest that the daily mean exchange ratios of the net turbulent O2 and CO2 fluxes depend sensitively on the forest ecosystem processes.Keywords: O2:CO2 exchange ratio, forest ecosystem, atmospheric O2/N2 ratio, continuous measurements(Published: 4 December 2013)Citation: Tellus B 2013, 65, 21120, http://dx.doi.org/10.3402/tellusb.v65i0.21120
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H. and co-authors. 1996. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature. 383(6597), 231 235.
    • Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T. and co-authors. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and d13C. Science. 287, 2467 2470.
    • Bender, M. L., Ho, D. T., Hendricks, M. B., Mika, R., Battle, M. O. and co-authors. 2005. Atmospheric O2/N2 changes, 1993 2002: implications for the partitioning of fossil fuel CO2 sequestration. Glob. Biogeochem. Cycles. 19, GB4017. DOI: 10.1029/2004GB002410.
    • Blaine, T. W., Keeling, R. F. and Paplawsky, W. J. 2006. An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmos. Chem. Phys. 6, 1181 1184.
    • Cassar, N., Mckinley, G. A., Bender, M. L., Mika, R. and Battle, M. 2008. An improved comparison of atmospheric Ar/N2 time series and paired ocean atmosphere model predictions. J. Geophys. Res. 113, D21122. DOI: 10.1029/2008JD009817.
    • Goto, D., Morimoto, S., Ishidoya, S., Ogi, A., Aoki, S. and coauthors. 2013. Development of a high precision continuous measurement system for the atmospheric O2/N2 ratio and its application at Aobayama, Sendai, Japan. J. Meteorol. Soc. Jpn. 91, 179 192.
    • Ishidoya, S., Aoki, S., Goto, D., Nakazawa, T., Taguchi, S. and co-authors. 2012a. Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of global CO2 budget. Tellus B. 64, 18964.
    • Ishidoya, S., Aoki, S. and Nakazawa, T. 2003. High precision measurements of the atmospheric O2/N2 ratio on a mass spectrometer. J. Meteorol. Soc. Jpn. 81, 127 140.
    • Ishidoya, S., Morimoto, S., Aoki, S., Taguchi, S., Goto, D. and coauthors. 2012b. Oceanic and terrestrial biospheric CO2 uptake estimated from atmospheric potential oxygen observed at NyAlesund, Svalbard, and Syowa, Antarctica. Tellus B. 64, 18924.
    • Ishidoya, S. and Murayama, S. 2013. Development of a new high precision continuous measuring system for atmospheric O2/N2 and Ar/N2 and its application to the observation in Tsukuba, Japan. submitted to Tellus B.
    • Keeling, R. F. 1988. Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric O2 Mole Fraction. PhD Thesis. Harvard University, Cambridge.
    • Keeling, R. F., Blaine, T., Paplawsky, B., Katz, L., Atwood, C. and co-authors. 2004. Measurement of changes in atmospheric Ar/N2 ratio using a rapid-switching, single-capillary mass spectrometer system. Tellus B. 56, 322 338.
    • Keeling, R. F., Manning, A. C., McEvoy, E. M. and Shertz, S. R. 1998. Methods for measuring changes in atmospheric O2 concentration and their application in southern hemisphere air. J. Geophys. Res. 103, 3381 3397.
    • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature. 381(6579), 218 221.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature. 358, 723 727.
    • Kondo, H., Saigusa, N., Murayama, S., Yamamoto, S. and Kannari, A. 2001. A numerical simulation of the daily variation of CO2 in the central part of Japan summer case. J. Meteorol. Soc. Jpn. 79, 11 21.
    • Kozlova, E., Manning, A. C., Jordan, A. and Brand, W. 2005. Investigations of the land biotic O2:CO2 exchange ratios in photosynthesis and respiration. In Proceedings (CD) of 7th International Carbon Dioxide Conference, Boulder, CO, September 25 30.
    • Kozlova, E. A., Manning, A. C., Kisilyakhov, Y., Seifert, T. and Heimann, M. 2008. Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 300-m tall tower in central Siberia. Glob. Biogeochem. Cycles. 22, GB4020. DOI: 10.1029/2008GB003209.
    • Langenfelds, R. L., Francey, R. J., Steele, L. P., Battle, M., Keeling, R. F. and co-authors. 1999. Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophys. Res. Lett. 26(13), 1897 1900.
    • Machta, L. and Hughes, E. 1970. Atmospheric oxygen in 1967 to 1970. Science 168, 1582 1584.
    • Manning, A. C. and Keeling, R. F. 2006. Global oceanic and terrestrial biospheric carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B. 58, 95 116.
    • Manning, A. C., Keeling, R. F. and Severinghaus, J. P. 1999. Precise atmospheric oxygen measurements with a paramagnetic oxygen analyzer. Glob. Biogeochem. Cycles. 13, 1107 1115.
    • Murayama, S., Saigusa, N., Chan, D., Yamamoto, S., Kondo, H. and co-authors. 2003. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan. Tellus B. 55, 232 243.
    • Murayama, S., Takamura, C., Yamamoto, S., Saigusa, N., Morimoto, S. and co-authors. 2010. Seasonal variations of atmospheric CO2, d13C, and d18O at a cool temperate deciduous forest in Japan: influence of Asian monsoon. J. Geophys. Res. 115, D17304. DOI: 10.1029/2009JD013626.
    • Nakazawa, T., Aoki, S., Murayama, S., Fukabori, M., Yamanouchi, T. and co-authors. 1991. The concentration of atmospheric carbon dioxide at Japanese Antarctic station, Syowa. Tellus B. 43, 126 135.
    • Nicolet, M. 1960. The properties and constitution of the upper atmosphere. In: Physics of the Upper Atmosphere (ed. J. A. Ratcliffe). Elsevier, New York, pp. 17 71.
    • Saigusa, N., Yamamoto, S., Murayama, S. and Kondo, H. 2005. Inter-annual variability of carbon budget components in and ASIAFLUX forest site estimated by long-term flux measurement. Agr. Forest. Meteorol. 134, 4 16.
    • Sarmiento, J. L., Gloor, M., Gruber, N., Beaulieul, C., Jacobson, A. R. and co-authors. 2010. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences. 7, 2351 2367.
    • Seibt, U., Brand, W. A., Heimann, M., Lloyd, J., Severinghaus, J. P. and co-authors. 2004. Observations of O2:CO2 exchange ratios during ecosystem gas exchange. Glob. Biogeochem. Cycles. 18, GB4024. DOI: 10.1029/2004GB002242.
    • Severinghaus, J. 1995. Studies of the Terrestrial O2 and Carbon Cycles in Sand Dune Gases and in Biosphere 2. PhD Thesis, Columbia University, New York.
    • Stephens, B., Keeling, R., Heimann, M., Six, K., Murnane, R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Glob. Biogeochem. Cycles. 12(2), 213 230.
    • Stephens, B. B., Bakwin, P. S., Tans, P. P., TecLaw, R. M. and Baumann, D. 2007. Application of a differential fuel-cell analyzer for measuring atmospheric oxygen variations. J. Atmos. Ocean. Tech. 24, 82 94.
    • Sturm, P., Leuenberger, M. and Schmidt, M. 2005. Atmospheric O2, CO2 and d13C observations from the remote sites Jungfraujoch, Switzerland, and Puy de Doˆ me, France. Geophys. Res. Lett. 32, L17811. DOI: 10.1029/2005GL023304.
    • Tanaka, M., Nakazawa, T. and Aoki, S. 1983. High quality measurements of the concentration of atmospheric carbon dioxide. J. Meteorol. Soc. Jpn. 61, 678 685.
    • Tohjima, Y., Mukai, H., Nojiri, Y., Yamagishi, H. and Machida, T. 2008. Atmospheric O2/N2 measurements at two Japanese sites: estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO). Tellus B. 60, 213 225.
    • van der Laan-Luijkx, I. T., Karstens, U., Steinbach, J., Gerbig, C., Sirignano, C. and co-authors. 2010. CO2, dO2/N2 and APO: observations from the Lutjewad, Mace Head and F3 platform flask sampling network. Atmos. Chem. Phys. 10, 10691 10704. DOI: 10.5194/acp-10-10691-2010.
    • Yamamoto, S., Murayama, S., Saigusa, N. and Kondo, H. 1999. Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus B. 51, 402 413.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article